UVAlive6807 Túnel de Rata (最小生成树)
题意
Sol
神仙题Orz
我们考虑选的边的补集,可以很惊奇的发现,这个补集中的边恰好是原图中的一颗生成树;
并且答案就是所有边权的和减去这个边集中的边的权值;
于是我们只需要求最大生成树就好了;
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, T, val, ans, f[MAXN];
struct Edge {
int u, v, w;
bool operator < (const Edge &rhs) const {
return w > rhs.w;
}
}E[MAXN];
int fa[MAXN];
int find(int x) {
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
void Kruskal() {
memset(f, 0, sizeof(f));
val = -1; ans = 0;
sort(E + 1, E + M + 1);
for(int i = 1; i <= N; i++) fa[i] = i;
for(int i = 1; i <= M; i++) {
int x = E[i].u, y = E[i].v, w = E[i].w, fx = find(x), fy = find(y);
if(fx == fy) continue;
fa[fx] = fy; f[i] = 1;
ans += w;
}
for(int i = 1; i <= M; i++) if(!f[i]) {val = E[i].w; break;}
}
int main() {
// freopen("a.in", "r", stdin);
T = read();
for(int i = 1; i <= T; i++) {
N = read(); M = read(); int sum = 0;
for(int j = 1; j <= M; j++) E[j].u = read(), E[j].v = read(), E[j].w = read(), sum += E[j].w;
Kruskal();
printf("Case #%d: %d %d\n", i, sum - ans, val);
}
return 0;
}
UVAlive6807 Túnel de Rata (最小生成树)的更多相关文章
- 求最小生成树——Kruskal算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...
- c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...
- c/c++ 用普利姆(prim)算法构造最小生成树
c/c++ 用普利姆(prim)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时 ...
- Prim算法---最小生成树
最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空 ...
- 求最小生成树——Kruskal算法和Prim算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这两个算法其实都是贪心思想的使用,但又能求出最优解.(代码借鉴http://blog.csdn.net/ ...
- HDU 4081 Peach Blossom Spring (最小生成树+dfs)
题意:给定一个 n 个点和相应的权值,要求你用 n-1 条边连接起来,其中一条边是魔法边,不用任何费用,其他的边是长度,求该魔法边的两端的权值与其他边费用的尽量大. 析:先求出最小生成树,然后再枚举每 ...
- 最小生成树(Kruskal+Prim)--模板
最小生成树-----在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. 应用场景 1.假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来.假设每个钉子可以通 ...
- 最小生成树,Prim和Kruskal的原理与实现
文章首先于微信公众号:小K算法,关注第一时间获取更新信息 1 新农村建设 大清都亡了,我们村还没有通网.为了响应国家的新农村建设的号召,村里也开始了网络工程的建设. 穷乡僻壤,人烟稀少,如何布局网线, ...
- “.Net 社区虚拟大会”(dotnetConf) 2016 Day 2 Keynote: Miguel de Icaza
美国时间 6月7日--9日,为期三天的微软.NET社区虚拟大会正式在 Channel9 上召开,美国时间6.8 是第二天, Miguel de Icaza 做Keynote,Miguel 在波士顿Xa ...
随机推荐
- Django中指定生成表名的方法
在模型类中定义元类: class Meta: de_table = 'tableName' #指定表名
- 支付宝小程序自定义弹窗插件|支付宝dialog插件|model插件
支付宝小程序自定义弹窗组件wcPop|小程序自定义对话框|actionSheet弹窗模板 支付宝小程序官方提供的alert提示框.dialog对话框.model弹窗功能比较有限,有些都不能随意自定义修 ...
- Codeforces Round #556 (Div. 2)
比赛链接 A 贪心 #include <cstdlib> #include <cstdio> #include <algorithm> #include <c ...
- (转)python字符串函数
原文:https://www.cnblogs.com/emanlee/p/3616755.html https://blog.csdn.net/luoyhang003/article/details/ ...
- java数据结构之(堆)栈
(堆)栈概述栈是一种特殊的线性表,是操作受限的线性表栈的定义和特点•定义:限定仅在表尾进行插入或删除操作的线性表,表尾—栈顶,表头—栈底,不含元素的空表称空栈•特点:先进后出(FILO)或后进先出(L ...
- Android 开发工具类 04_KeyBoardUtils
打开或关闭软键盘: 1.打卡软键盘: 2.关闭软键盘. import android.content.Context; import android.view.inputmethod.InputMet ...
- IntelliJ IDEA的黑白色背景切换(Ultimate和Community版本皆通用)
不多说,直接上干货! IntelliJ IDEA的黑白色背景切换 File -> Setting -> Editor -> Colors & F ...
- java学习-java.lang.Math随机数生成
java中的随机数,java.lang.Math.random()和java.util.Random.nextDouble() Math.random()方法是生成0.0---1.0区域内的随机数,每 ...
- android学习-LocationManager(一)-定位方式原理解析
参考资源:android 4种定位原理及实现——1 android使用不同的方法为应用提供位置信息. 定位的方式有三种:GPS地位(A-GPSAssistedGPS:辅助全球卫星定位系统,或者是同步G ...
- Spring4.x所有Maven依赖
Spring4.x所有Maven依赖 定义Spring版本号 1 <properties> 2 <org.springframework.version>4.3.7.RELEA ...