【刷题】BZOJ 5415 [Noi2018]归程
www.lydsy.com/JudgeOnline/upload/noi2018day1.pdf
Solution
考试的时候打的可持久化并查集,没调出来QAQ
后面知道了kruskal重构树这个东西,感觉好简单啊
这道题就建出kruskal重构树后,对于两个点找到它们的LCA,其子树min就是答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200000+10,MAXM=400000+10,inf=0x3f3f3f3f;
int T,n,m,e,beg[MAXN],nex[MAXM<<1],to[MAXM<<1],w[MAXM<<1],wt[MAXN<<1],Mn[MAXN<<1],cnt,d[MAXN],fa[MAXN<<1],Jie[20][MAXN<<1];
ll lastans;
struct node{
int u,v,l,a;
inline bool operator < (const node &A) const {
return a>A.a;
}
};
node side[MAXM];
struct cmp{
inline bool operator () (int a,int b) const {
return d[a]>d[b];
}
};
std::priority_queue<int,std::vector<int>,cmp> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
w[e]=z;
}
inline void dijkstra()
{
for(register int i=1;i<=n;++i)d[i]=inf;
d[1]=0;
q.push(1);
while(!q.empty())
{
int x=q.top();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(d[to[i]]>d[x]+w[i])d[to[i]]=d[x]+w[i],q.push(to[i]);
}
}
inline int found(int x)
{
if(x!=fa[x])fa[x]=found(fa[x]);
return fa[x];
}
inline void init()
{
dijkstra();
cnt=n;
std::sort(side+1,side+m+1);
for(register int i=1;i<=n;++i)Mn[i]=d[i];
for(register int i=1;i<=n+n-1;++i)fa[i]=i,wt[i]=inf;
for(register int i=1,u,v;i<=m;++i)
{
u=found(side[i].u),v=found(side[i].v);
if(u==v)continue;
else
{
cnt++;
Mn[cnt]=min(Mn[u],Mn[v]);
wt[cnt]=side[i].a;
fa[u]=fa[v]=cnt;
Jie[0][u]=Jie[0][v]=cnt;
}
}
for(register int j=1;j<=19;++j)
for(register int i=1;i<=cnt;++i)Jie[j][i]=Jie[j-1][Jie[j-1][i]];
}
inline int Get(int x,int a)
{
for(register int i=19;i>=0;--i)
if(wt[Jie[i][x]]>a)x=Jie[i][x];
return x;
}
int main()
{
read(T);
while(T--)
{
e=0;lastans=0;
read(n);read(m);
for(register int i=1;i<=n;++i)beg[i]=0;
for(register int i=1,u,v,l,a;i<=m;++i)
{
read(u);read(v);read(l);read(a);
side[i]=(node){u,v,l,a};
insert(u,v,l);insert(v,u,l);
}
init();
ll Q,K,S;
read(Q);read(K);read(S);
while(Q--)
{
ll v0,p0,v,p;read(v0);read(p0);
v=(v0+1ll*K*lastans-1)%n+1;
p=(p0+1ll*K*lastans)%(S+1);
write(lastans=Mn[Get(v,p)],'\n');
}
}
return 0;
}
【刷题】BZOJ 5415 [Noi2018]归程的更多相关文章
- [BZOJ] 5415: [Noi2018]归程
在做Kruskal求最小生成树时,假设要通过边权\(w\)的边合并子树\(x\)和\(y\),我们新建一个方点,把两个子树接到这个方点上,并将方点的点权赋为\(w\),最终形成的二叉树就是\(Krus ...
- BZOJ 5415: [Noi2018]归程(kruskal重构树)
解题思路 \(NOI2018\)的\(Day1\) \(T1\),当时打网络赛的时候不会做.学了一下\(kruskal\)重构树后发现问题迎刃而解了.根据\(kruskal\)的性质,如果要找从\(u ...
- [LOJ 2718][UOJ 393][BZOJ 5415][NOI 2018]归程
[LOJ 2718][UOJ 393][BZOJ 5415][NOI 2018]归程 题意 给定一张无向图, 每条边有一个距离和一个高度. 再给定 \(q\) 组可能在线的询问, 每组询问给定一个点 ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- BZOJ第一页刷题计划
BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...
- 【刷题】BZOJ 2260 商店购物
Description Grant是一个个体户老板,他经营的小店因为其丰富的优惠方案深受附近居民的青睐,生意红火.小店的优惠方案十分简单有趣.Grant规定:在一次消费过程中,如果您在本店购买了精制油 ...
随机推荐
- jenkins 多任务串行执行
摘要 今天在新创建自动化部署项目的时候遇到了一个问题:我们的项目是maven聚合的所以在构建maven项目的时候要从parent开始build,但是这样会造成一个问题,我每次添加此parent项目下的 ...
- opengl-glsl
GLSL 着色器是使用一种叫GLSL的类C语言写成的.GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性. 着色器的开头总是要声明版本,接着是输入和输出变量.uniform和mai ...
- GearCase UI v0.2 版本
12 月闲暇的时间一直在更新 GearCase.通过不懈的努力,GearCase 今天迎来了一次中间版本的更新,这次的更新主要加入了 Springs 动画组件,部分组件也添加了此组件的动画效果. &g ...
- MyBatis学习(一)————纯jdbc编程
什么是JDBC JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java ...
- tensorflow enqueue_many传入多个值的列表传入异常问题————Shape () must have rank at least 1
tf 的队列操作enqueue_many传入的值是列表,但是放入[]列表抛异常 File "C:\Users\lihongjie\AppData\Local\Programs\Python\ ...
- dobule运算
DecimalFormat df = new DecimalFormat("0.00"); double rate = (warnMonNum/totalCustCount)*10 ...
- 【探路者】Beta发布用户使用报告
用户数量:18 一.用户列表及评论. 用户序号 用户来源 用户下载软件途径 用户姓名 用户描述(信息) 使用次数 用户评价 1 张恩聚 QQ发送可运行jar包 周楠 吉林大学在读研究生 5 ...
- Scrum Meeting 5 -2014.11.11
放假过掉一大半.大家都努力赶着进度,算法实现基本完成.可能还有些细小的改动,但也可以统一进入测试阶段了. 今天叫了部分在校人员开了个小会.任务决定以测试为主,同时开始进行服务器的部署. 在之前尝试服务 ...
- Daily Scrumming* 2015.10.30(Day 11)
一.总体情况总结 今日项目总结: 1.前后端同一了API设计以及API权限认证.用户状态保存的开发方案 2.API以及后端模型已经开始开发,前端UEditor开始学习,本周任务有良好的起步 3.前后端 ...
- OO第四阶段总结
一.测试与正确性论证的区别 从哲学的角度来说,正确性论证与测试的关系就像理论与实践的关系一样. 使用测试的方法检验程序正确性确实是一个非常方便可行且广泛运用的方法.可以通过几个简单或复杂的测试样例,迅 ...