参考:http://blog.csdn.net/f_zyj/article/details/76037583
如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi233/article/details/79323568
原文即是一篇很好的FFT入门博客,但是笔者打算为了日后的学习,则将原篇章的结构删改增添一下,如有思路上的雷同十分正常。
“是时候打开FFT的大门了!”

预备知识:

1.至少知道基础数论与一定解三角形知识(大概是高中水平)。
2.定义\(i=\sqrt{-1}\)
3.引入复数(即形如\(a+bi\)(a,b均为实数)的数的集合)
4.\((cos\theta+i\times sin\theta)^k=cos(k\theta)+i\times sin(k\theta)\)
5.显然我们对多项式FFT之后得到的答案不是我们想要的,那么这时候就需要反着用FFT把式子再变回去(本文记做IFFT)。

这里证明一下第四条,用归纳法。
显然当\(k=1\)时成立。
当\(k\)成立时,我们有:
\((cos\theta+i\times sin\theta)^{k+1}\)
\(=(cos\theta+i\times sin\theta)^k\times (cos\theta+i\times sin\theta)\)
\(=(cos(k\theta)+i\times sin(k\theta))\times (cos\theta+i\times sin\theta)\)
\(=cos(k\theta)cos\theta+i\times sin(k\theta)cos\theta+i\times cos(k\theta)sin\theta+i^2\times sin(k\theta) sin\theta\)
\(=cos(k\theta)cos\theta-sin(k\theta) sin\theta+i\times (sin(k\theta)cos\theta+cos(k\theta)sin\theta)\)
\(=cos((k+1)\theta)+i\times sin((k+1)\theta)\)
得证。

问题引入:

设\(A(x)=\sum_{i=0}^{n-1}a_ix^i,B(x)=\sum_{i=0}^{n-1}b_ix^i\),求\(A(x)\times B(x)\)后的多项式系数。

初探:

显然我们有一个\(O(n^2)\)的解法,但是实在是太慢了。
考虑到一个\(n-1\)次多项式可以看做是定义在复数域上的函数,则我们一定可以找到n个点来唯一确定这个函数。
当然我们也可以通过这些点来表示这个多项式。
假设:
\(A(x)\)被表示为:\(<(x_0,y_{a_0}),(x_1,y_{a_1}),\ldots,(x_{2n-2},y_{a_{2n-2}})>\)
\(B(x)\)被表示为:\(<(x_0,y_{b_0}),(x_1,y_{b_1}),\ldots,(x_{2n-2},y_{b_{2n-2}})>\)
显然\(A(x)\times B(x)\)被表示为:\(<(x_0,y_{a_0}y_{b_0}),(x_1,y_{a_1}y_{b_1}),\ldots,(x_{2n-2},y_{a_{2n-2}}y_{b_{2n-2}})>\)

这里多取了点的原因在于\(A(x)\times B(x)\)是一个\(2n-2\)次多项式,则至少要取\(2n-1\)个点才能保证正确。

但是显然还是\(O(n^2)\)的。

再试:

考虑设\(A(x_i)=A_0(x_i^2)+x_iA_1(x_i^2)\),其中:
\(A_0(x)=a_0+a_2x+a_4x^2+\ldots+a_{n-2}x^{\frac{n}{2}+1}\)
\(A_1(x)=a_1+a_3x+a_5x^2+\ldots+a_{n-1}x^{\frac{n}{2}+1}\)

其实就是按照系数下标的奇偶性分类了一下。

此时我们再令取点的\(x\)值为\(<x_0,x_1,\ldots,x_{\frac{n}{2}-1},-x_0,-x_1,\ldots,-x_{\frac{n}{2}-1}>\)
我们发现把\(x\)平方后我们的取值瞬间缩小了一半,而原式唯一变化的就是\(A_1(x)\)前的符号。
看起来我们似乎找到了\(O(nlogn)\)的可行方案。
但是很可惜,这样优秀的\(x\)取值的性质只会保留一次,也就是说我们只是得到了一个\(O(\frac{n^2}{2})\)。
如何才能每次将问题的规模缩小一半是我们的目标。

插曲:

有个人告诉你:不如试试\(X_n=cos\frac{2\pi}{n}+i\times sin\frac{2\pi}{n}\) 的 \(0\ldots n-1\)次方作为\(x\)的取值。

这块大家一直有个疑惑:这是怎么构造出来的啊?
事实上傅里叶变换最早是应用于信号处理上的,傅里叶提出:任何连续周期信号可以由一组适当的正弦曲线组合而成。
多项式可以看做非连续周期信号,然后通过各种奇妙的姿势让它逼近正弦曲线的组合形,详情可以看松松松WC2018的课件。
“逼近”显然用到了微积分,不适合初学者,所以就直接跳过了。(其实我也不会……)
(再多说一点吧,其实上面和下面的数学推理完全可以从物理层面理解,还是可以参考松松松WC2018的课件)

继续:

那么令取点的\(x\)值为\(<X_n^0,X_n^1,\ldots,X_n^{n-1}>\)
我们可知:
\((X_n^{k})^2\)

\(=X_n^{2k}\)

\(=cos\frac{2k\times 2\pi}{n}+i\times sin\frac{2k\times 2\pi}{n}\)

\(=cos\frac{2k\pi}{\frac{n}{2}}+i\times sin\frac{2k\pi}{\frac{n}{2}}\)

\(=X_{\frac{n}{2}}^k\)


\(X_n^{k}\)

\(=cos\frac{k\times 2\pi}{n}+i\times sin\frac{k\times 2\pi}{n}\)

根据三角函数的周期性可知,\(k\)对\(n\)取模显然不会对答案造成影响。
于是我们有\(X_n^{k}=X_n^{k\%n}\)

那么显然对于\(<(X_n^0)^2,(X_n^1)^2,\ldots,(X_n^{n-1})^2>\)

它等效于\(<X_{\frac{n}{2}}^0,X_{\frac{n}{2}}^1,\ldots,X_{\frac{n}{2}}^{\frac{n}{2}-1},X_{\frac{n}{2}}^0,X_{\frac{n}{2}}^1,\ldots,X_{\frac{n}{2}}^{\frac{n}{2}-1}>\)

我们好像看到了\(O(nlogn)\)的曙光了。

尾声:

显然我们可以对\(x\)的取值折半,然后对于左右区间的\(x\)值递归下去即可。
Q1:诶等等,“再试”里面的内容好像没有应用上啊……

A1:那就转化一下,其实我们只需要求一个区间的\(A_0(x)\)和\(A_1(x)\)值递归下去求\(A(x)\)即可。
也就是说其实我们是得到了:
\(<(A_0)_0,(A_0)_1,\ldots,(A_0)_{\frac{n}{2}-1},(A_1)_0,(A_1)_1,\ldots,(A_1)_{\frac{n}{2}-1}>\)

Q2:这好像是画蛇添足……

A2:emmm……我说这个可以用于常数优化你信吗……
显然\(A(X_n^k)=(A_0)_{k\%\frac{n}{2}}+X_n^k(A_1)_{k\%\frac{n}{2}}\)

取模是因为,不要忘了我们的取值是由两个一样的左右区间合并在一起的。

那么我们得到了\(<A_0,A_1,\ldots,A_{n-1}>\)

(其中\(A_k=A(X_n^k)\))

我们好像把这个序列的长度减少了一半诶!那自然是快了二倍啊。

不要忘了n要满足始终是2的倍数,所以n要取2的整数次幂,同时将没用的次幂的系数填成0。

Q3:IFFT怎么做啊?

A3:继续看下去……?

补遗:

略讲一下IFFT。
显然我们可以把FFT的最初算法(也就是DFT)看做两个矩阵相乘。

两个矩阵分别一个填\((X_n^k)^m\),一个填系数,可以上参考处原博客看矩阵。

那么我们把第一个矩阵变成逆矩阵岂不是为IFFT?
其实就是这样,并且事实上就是填\(((X_n^{-k})^m)/n\),具体证明过程看参考处原博客。
剩下的做法就和FFT一样啦。

谢幕:

事实上我上述讲的内容其实没有多少用(滑稽。
因为你理解半天也不如不理解知道怎么用然后默写下来。
但是理解了更好背啊。

例题:

模板:
HDU1402:A * B Problem Plus:http://www.cnblogs.com/luyouqi233/p/8448969.html

应用:
BZOJ3527:[ZJOI2014]力:http://www.cnblogs.com/luyouqi233/p/8452117.html

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

模板:快速傅里叶变换(FFT)的更多相关文章

  1. [模板] 快速傅里叶变换/FFT/NTT

    简介 FFT是多项式乘法的一种快速算法, 时间复杂度 \(O(n \log n)\). FFT可以用于求解形如\(C_i = \sum_{j=0}^i A_jB_{i-j}\)的式子. 如果下标有偏差 ...

  2. [模板]快速傅里叶变换(FFT)

    Miskcoo大佬的多项式全家桶传送门 rvalue大佬的FFT讲解传送门 用途 将多项式快速(nlogn)变成点值表达,或将点值表达快速变回系数表达(逆变换),(多数时候)来达到求卷积的目的 做法 ...

  3. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

  4. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  5. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  6. 快速傅里叶变换FFT

    多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...

  7. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  8. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  9. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  10. 快速傅里叶变换(FFT)

    扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...

随机推荐

  1. 2.4 Oracle之DCL的SQL语句之用户权限以及三大范式

    DCL   (Data Control Language,数据库控制语言)用于定义数据库权限 一.用户权限 1.1  建立用户以及授权: Eg :CREATE USER 用户名  IDENTIFIED ...

  2. tomcat启动项目的时候不报错而且启动的很快

    最后发现是tomcat部署项目的时候,并没有将一部分文件复制到tomcat的目录下 方法 将没有添加的目录 Finish

  3. SQLAlchemy并发写入引发的思考

    背景 近期公司项目中加了一个积分机制,用户登录签到会获取登录积分,但会出现一种现象就是用户登录时会增加双倍积分,然后生成两个积分记录.此为问题  问题分析 项目采用微服务架构,下图为积分机制流程   ...

  4. python-分叉树枝

    import turtle def draw_branch(length): #绘制右侧树枝 if length >5: if length == 10: turtle.pencolor('gr ...

  5. TFS任务预览

    不太熟悉TFS任务项的建立. 初步建立及按老师要求分配到个人的任务设置与时间安排如下: (长时间任务可由多人合作完成,具体根据情况迅速调整任务分配) 加上每人需要进行阅读前一小组的代码需要时间2*8= ...

  6. C#和.net框架

    第一章C#和.net框架 c#只是.net的一部分,.net不只包含C#.C#是一种程序语言,.net是一个框架/平台 C#和.NET框架 在.NET之前 20世纪90年代,微软平台多数程序员使用VB ...

  7. 福大软工1816 · 评分结果 · Alpha冲刺

    作业地址:alpha冲刺1.alpha冲刺2.alpha冲刺3.alpha冲刺4.alpha冲刺5.alpha冲刺6.alpha冲刺7.alpha冲刺8.alpha冲刺9.alpha冲刺10 作业提交 ...

  8. android 的helloworld没跑起来 原因

    <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com. ...

  9. 分类Category的概念和使用流程

    一.了解 1.分类的概念: category:类别.类目.分类 2.分类的作用: 将1个类中不同方法分到多个不同的文件中存储 可以在不修改原来类的基础上,为这个类扩充一些方法 注意: 分类中只能增加方 ...

  10. JAVA 构造函数 静态变量

    class HelloA { public HelloA() { System.out.println("HelloA"); } { System.out.println(&quo ...