BZOJ2339 HNOI2011卡农(动态规划+组合数学)
考虑有序选择各子集,最后除以m!即可。设f[i]为选i个子集的合法方案数。
对f[i]考虑容斥,先只满足所有元素出现次数为偶数。确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1)。
显然不能为空集,于是去掉前i-1个已经满足限制的方案,也即f[i-1]。
然后去掉第i个子集和之前重复的情况。显然如果有重复,将这两个去掉后仍然是合法的。那么方案数为f[i-2]*(i-1)*(2n-1-(i-2))。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 100000007
#define N 1000010
int n,m,f[N],inv[N],p,A[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2339.in","r",stdin);
freopen("bzoj2339.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
p=;for (int i=;i<=n;i++) p=(p<<)%P;p--;
inv[]=;
for (int i=;i<=m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=m;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
A[]=;for (int i=;i<=m;i++) A[i]=1ll*A[i-]*(p-i++P)%P;
f[]=;f[]=;
for (int i=;i<=m;i++) f[i]=((A[i-]-f[i-]+P)%P-1ll*f[i-]*(i-)%P*(p-i++P)%P+P)%P;
cout<<1ll*f[m]*inv[m]%P;
return ;
}
BZOJ2339 HNOI2011卡农(动态规划+组合数学)的更多相关文章
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- 【BZOJ2339】卡农(递推,容斥)
[BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 (数论计数,DP)
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...
随机推荐
- web测试通用要点大全(Web Application Testing Checklist)
在测试工作中经常遇到测试同一控件功能的情景,这样几年下来也积累了各种测试功能控件的checklist,过年期间抽空整理分享出来.通过下面的清单,任何测试新手都可以快速写出媲美工作好几年的测试老鸟的测试 ...
- mnist手写数字识别(SVM)
import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.linear_model import ...
- 利用VS2015开发python版本的caffe应用
打开VS2015,选择“新建项目”->“其它语言”->“python”,VS会提示你安装PTVS(Python Tools for Visual Studio)插件,安装完毕后即可开始py ...
- Appium 安装详细版教程
1.安装Appium Python Client包 输入命令 pip install Appium-Python-Client
- Scikit-learn数据变换
转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573 本文主要是对照scikit-learn的preprocessing章节 ...
- Vue02
3.Vue对象提供的属性功能 过滤器,就是vue允许开发者自定义的文本格式化函数,可以使用在两个地方:输出内容和操作数据中. 定义过滤器的方式有两种. 1 使用Vue.filter()进行全局定义 V ...
- access和MySQL mssql
Access.MSSQL.MYSQL数据库之间有什么区别? Access数据库.MSSQL数据库.MYSQL数据库之间有什么区别? 不少企业和个人站长在网站制作时,会对数据库的概 ...
- cobbler部署以及使用
常用软件安装及使用目录 资源链接:https://pan.baidu.com/s/1yfVnuSgY5vOTh-B74tpVyw 网盘分享的文件在此 cobbler第一次操作history. ec ...
- excel中如何将时间戳转换为日期格式
https://www.cnblogs.com/xueluozhangxin/p/5868225.html =TEXT((B2/1000+8*3600)/86400+70*365+19,"y ...
- Linux常用软件安装与配置——目录
http://blog.csdn.net/clevercode/article/details/45740431