考虑有序选择各子集,最后除以m!即可。设f[i]为选i个子集的合法方案数。

  对f[i]考虑容斥,先只满足所有元素出现次数为偶数。确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1)。

  显然不能为空集,于是去掉前i-1个已经满足限制的方案,也即f[i-1]。

  然后去掉第i个子集和之前重复的情况。显然如果有重复,将这两个去掉后仍然是合法的。那么方案数为f[i-2]*(i-1)*(2n-1-(i-2))。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 100000007
#define N 1000010
int n,m,f[N],inv[N],p,A[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2339.in","r",stdin);
freopen("bzoj2339.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
p=;for (int i=;i<=n;i++) p=(p<<)%P;p--;
inv[]=;
for (int i=;i<=m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=m;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
A[]=;for (int i=;i<=m;i++) A[i]=1ll*A[i-]*(p-i++P)%P;
f[]=;f[]=;
for (int i=;i<=m;i++) f[i]=((A[i-]-f[i-]+P)%P-1ll*f[i-]*(i-)%P*(p-i++P)%P+P)%P;
cout<<1ll*f[m]*inv[m]%P;
return ;
}

BZOJ2339 HNOI2011卡农(动态规划+组合数学)的更多相关文章

  1. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  2. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  3. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  4. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  5. 【BZOJ2339】卡农(递推,容斥)

    [BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...

  6. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  7. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  8. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  9. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

随机推荐

  1. 容器类 - bootStrap4常用CSS笔记

    .container 居中容器类,最大宽度默认为1200px.左右间隙15px .container-fluid 全屏容器类. .jumbotron 创建一个大的灰色的圆角背景框 .jumbotron ...

  2. [面试]CVTE 2019提前批 Windows应用开发一面

    7.30接到面试电话问有没有时间进行一个20分钟左右的电话面试,不巧当时要去赶火车,就约到了两天后. 8.1还是同一个面试官打来电话 首先介绍项目吧,第一场面试,项目准备的也不怎么充分,讲了一个HAL ...

  3. PHP核心技术——异常和错误处理

    PHP只有手动抛出异常后才能捕获异常 $a = null; try { $a = 5/0; echo $a,PHP_EOL; } catch (exception $e) { $e -> get ...

  4. 出现 org.springframework.beans.factory.BeanCreationException 异常的原因及解决方法

    1 异常描述 在从 SVN 检出项目并配置完成后,启动 Tomcat 服务器,报出如下错误: 2 异常原因 通过观察上图中被标记出来的异常信息,咱们可以知道 org.springframework.b ...

  5. Ajax请求返回Error:200无数据的解决方法

    先看代码 $.ajax({ type:"GET", url:"https://****/charts/data/genre2.json", dataType:& ...

  6. url的param与dict转换

    urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...

  7. xml配置文件特殊符号的处理方法

    2017.7.19遇到问题:偶然出现“认证失败,请重新登录”的现象   在xml中英文问号“?”是可以被正常解析的,但是以下这几种符号是不能正常解析的:分别是“&”.“<”.“>” ...

  8. DB2分页查询简单示例

    select * from ( select a.* ,rownumber() over(order by create_time desc) as rowid from ( select * fro ...

  9. 09慕课网《进击Node.js基础(一)》HTTP-get/request

    get是对request封装 可以在后台发起http请求,获取远程资源,更新或者同步远程资源 http.request(options[,callback]) 以下代码灌水失败: var http = ...

  10. sql索引的填充因子多少最好,填充因子有什么用

    和索引重建最相关的是填充因子.当创建一个新索引,或重建一个存在的索引时,你可以指定一个填充因子,它是在索引创建时索引里的数据页被填充的数量.填充因子设置为100意味着每个索引页100%填满,50%意味 ...