BZOJ2339 HNOI2011卡农(动态规划+组合数学)
考虑有序选择各子集,最后除以m!即可。设f[i]为选i个子集的合法方案数。
对f[i]考虑容斥,先只满足所有元素出现次数为偶数。确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1)。
显然不能为空集,于是去掉前i-1个已经满足限制的方案,也即f[i-1]。
然后去掉第i个子集和之前重复的情况。显然如果有重复,将这两个去掉后仍然是合法的。那么方案数为f[i-2]*(i-1)*(2n-1-(i-2))。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 100000007
#define N 1000010
int n,m,f[N],inv[N],p,A[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2339.in","r",stdin);
freopen("bzoj2339.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
p=;for (int i=;i<=n;i++) p=(p<<)%P;p--;
inv[]=;
for (int i=;i<=m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=m;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
A[]=;for (int i=;i<=m;i++) A[i]=1ll*A[i-]*(p-i++P)%P;
f[]=;f[]=;
for (int i=;i<=m;i++) f[i]=((A[i-]-f[i-]+P)%P-1ll*f[i-]*(i-)%P*(p-i++P)%P+P)%P;
cout<<1ll*f[m]*inv[m]%P;
return ;
}
BZOJ2339 HNOI2011卡农(动态规划+组合数学)的更多相关文章
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- 【BZOJ2339】卡农(递推,容斥)
[BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 (数论计数,DP)
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...
随机推荐
- AWK高端功能-数组
第1章 awk命令基础 1.1 awk命令执行过程 1.如果BEGIN 区块存在,awk执行它指定的动作. 2.awk从输入文件中读取一行,称为一条输入记录.如果输入文件省略,将从标准输入读取 3.a ...
- jQuery瀑布流详解(PC及移动端)
前言 瀑布流布局已成为当今非常普遍的图片展示方式,无论是PC还是手机等移动设备上.这种布局图片的样式大概分为三种:等高等宽.等宽不等高.等高不等宽,接下来我们就最为普遍的等宽不等高形式来作为示例. 我 ...
- 阿里云服务器ECS上ubuntu安装nginx后默认站点页面打开错误,显示无法访问此网站
问题:在新买的阿里云服务器ECS上安装nginx后打开默认页面失败,如下图所示. 系统环境:Ubuntu 16.04.4 LTS64版本. 步骤回顾: root用户下运行命令 apt-get inst ...
- NO---20 文件上传
文件上传是我们会经常用到的一个业务,其实在h5中新增了FormData的对象,用它来提交表单,并且可以提交二进制文件,所以今天就写写文件上传,希望可以对大家有帮助 FormData 上传文件实例 首先 ...
- 用 Delphi 7 实现基于 FFMS2 的视频转 GIF 工具 [原创]
儿子经常要把自拍的视频(ts格式)转成表情包,下载了几个工具都不大好用,更多的还要收费.那就想自己写一个吧,没想到这一下断断续续地,居然 3 个月过去了.现在总算弄出个作品来了,结个贴吧.唉,天资愚钝 ...
- 在IIS中部署Asp.Net网站
在IIS中部署Asp.Net网站 1.添加IIS或者删除IIS,在控制面板=>程序和功能=>打开或关闭功能 启动iis,右键计算机=>管理=>服务和应用程序=>Inter ...
- 比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区 ...
- vue项目部署流程
用vue-cli搭建的做法1.npm run build2.把dist里的文件打包上传至服务器 例 /data/www/,我一般把index.html放在static里所以我的文件路径为:/data/ ...
- stat命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangcsdn/article/details/81012732 stat命令用于显示文件的状态信息.stat命令的 ...
- lscpu命令详解
基础命令学习目录首页 一.lscpu输出 使用lscpu查看的结果如下图,这里会显示很多信息,如下: 使用lscpu -p会详细的numa信息,如下: [root@localhost ~]# lscp ...