题目描述

The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget.

The roller coaster will be built on a long linear stretch of land of length L (1 ≤ L ≤ 1,000). The roller coaster comprises a collection of some of the N (1 ≤ N ≤ 10,000) different interchangable components. Each component i has a fixed length Wi (1 ≤ Wi ≤ L). Due to varying terrain, each component i can be only built starting at location Xi (0 ≤ Xi ≤ L - Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component.

Each component i has a "fun rating" Fi (1 ≤ Fi ≤ 1,000,000) and a cost Ci (1 ≤ Ci ≤ 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows' total budget is B (1 ≤ B ≤ 1000). Help the cows determine the most fun roller coaster that they can build with their budget.

奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算 的方案. 过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点 Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一 种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).

输入输出格式

输入格式:

Line 1: Three space-separated integers: L, N and B.

Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.

输出格式:

Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not possible to build a roller-coaster within budget, output -1.

输入输出样例

输入样例#1: 复制

5 6 10
0 2 20 6
2 3 5 6
0 1 2 1
1 1 1 3
1 2 5 4
3 2 10 2
输出样例#1: 复制

17

说明

Taking the 3rd, 5th and 6th components gives a connected roller-coaster with fun value 17 and cost 7. Taking the first two components would give a more fun roller-coaster (25) but would be over budget.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define mp make_pair
#define pb push_back
const int maxn = ;
// name*******************************
int f[][];
int L,n,B;
struct node
{
int x,w,f,c;
} a[];
int ans=-;
// function******************************
bool cmp(node a,node b)
{
return a.x<b.x;
} //***************************************
int main()
{
cin>>L>>n>>B;
For(i,,n)
{
cin>>a[i].x>>a[i].w>>a[i].f>>a[i].c;
}
me(f,-);
sort(a+,a++n,cmp);
f[][]=;
For(i,,n)
{
int u=a[i].x;
int v=a[i].x+a[i].w;
FFor(j,B,a[i].c)
{
if(f[u][j-a[i].c]!=-)
f[v][j]=max(f[v][j],f[u][j-a[i].c]+a[i].f);
}
}
For(i,,B)
ans=max(ans,f[L][i]);
cout<<ans; return ;
}

P2854 [USACO06DEC]牛的过山车Cow Roller Coaster的更多相关文章

  1. bzoj1649 / P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster dp 对铁轨按左端点排个序,蓝后就是普通的二维dp了. 设$d[i][j]$为当前位置$i$,成本为$j$的最小花费 ...

  2. 洛谷P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster 题目描述 The cows are building a roller coaster! They want you ...

  3. 【题解】P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster 题目描述 The cows are building a roller coaster! They want you ...

  4. [luoguP2854] [USACO06DEC]牛的过山车Cow Roller Coaster(DP + sort)

    传送门 先按照起点 sort 一遍. 这样每一个点的只由前面的点决定. f[i][j] 表示终点为 i,花费 j 的最优解 状态转移就是一个01背包. ——代码 #include <cstdio ...

  5. BZOJ 1649: [Usaco2006 Dec]Cow Roller Coaster( dp )

    有点类似背包 , 就是那样子搞... --------------------------------------------------------------------------------- ...

  6. bzoj1649 [Usaco2006 Dec]Cow Roller Coaster

    Description The cows are building a roller coaster! They want your help to design as fun a roller co ...

  7. 【BZOJ】1649: [Usaco2006 Dec]Cow Roller Coaster(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 又是题解... 设f[i][j]表示费用i长度j得到的最大乐趣 f[i][end[a]]=ma ...

  8. BZOJ——1649: [Usaco2006 Dec]Cow Roller Coaster

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 7 ...

  9. 【bzoj1649】Cow Roller Coaster

    傻逼dp题. dp[i][j]表示用了i长度已花费成本j所能得到的价值. 然后枚举一下铁轨随便做了. 不行就sort一下. #include<bits/stdc++.h> #define ...

随机推荐

  1. 原生javascript实现图片自动轮播和点击轮播代码

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. Spring Boot—15SpringJPA

    pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  3. JConsole监控Java程序的运行情况

    JConsole 一.JConsole是什么 从Java 5开始 引入了 JConsole.JConsole 是一个内置 Java 性能分析器,可以从命令行或在 GUI shell 中运行.您可以轻松 ...

  4. Eigen学习笔记2-Matrix类

    在Eigen中,所有的矩阵Matrix和向量Vector都是由Matrix类构造的.向量只不过是矩阵的特殊形式,只有一列(列向量)或者一行. Matrix模板类有6个参数,其中前三个参数是必须的.前三 ...

  5. Python DDT(data driven tests)模块心得

    关于ddt模块的一些心得,主要是看官网的例子,加上一点自己的理解,官网地址:http://ddt.readthedocs.io/en/latest/example.html ddt(data driv ...

  6. 从Azure上构建Windows应用程序映像

    从Azure上构建windows应用程序映像同构建Linux应用程序映像总体流程比较类似,可以参考上图Linux映像的制作发布等流程,具体细节又有所差别. 具体步骤如下: 从Azure管理平台上申请W ...

  7. nodejs+redis使用

    安装 linux安装及配置之前写过了http://www.cnblogs.com/zycbloger/p/6226682.html windows安装 下载地址:https://github.com/ ...

  8. 【gp数据库】查询系统表看模式下所有表的分布键信息

    Greenplum是关系型的分布式数据库,需要存储的数据库在进入数据库时,将先进行数据分布的处理工作,讲一个表的数据平均分不到每个节点上,并为每个表指定一个分发列(distribute Column) ...

  9. 【MySQL】Linux下mysql安装全过程——小白入门篇(含有问题详解)

    本次安装操作在申请的腾讯云上实现(版本:CentOS Linux release 7.4.1708 (Core) ). 根据教程实现(中途各种挖坑,填坑...),地址:http://www.runoo ...

  10. 多线程应用-函数方式(thread)

    多线程只能使用一颗CPU,无法发挥多核心的优势.计算密集型用python的多线程效果不明显的,I/O密集型才能看出效果,可以发挥多核优势. GIL是全局资源锁,所以,如果没有涉及到资源的调用,是不会体 ...