python实现图像二值化
1.什么是图像二值化
彩色图像: 有blue,green,red三个通道,取值范围均为0-255
灰度图:只有一个通道0-255,所以一共有256种颜色
二值图像:只有两种颜色,黑色和白色,二值化就是把图像的像素转变为0或者255,只有这两个像素值。0白色 1黑色 。0是黑色,255是白色。
2.图像二值化
(1)先获取阈值
(2)根据阈值去二值化图
(3)threshold函数
ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- thresh: 阈值
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
- type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
(4)全局阈值 -代码实现
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #图像二值化 0白色 1黑色
7 #全局阈值
8 def threshold_image(image):
9 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
10 cv.imshow("原来", gray)
11
12 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)#大律法,全局自适应阈值 参数0可改为任意数字但不起作用
13 print("阈值:%s" % ret)
14 cv.imshow("OTSU", binary)
15
16 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)#TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
17 print("阈值:%s" % ret)
18 cv.imshow("TRIANGLE", binary)
19
20 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY)# 自定义阈值为150,大于150的是白色 小于的是黑色
21 print("阈值:%s" % ret)
22 cv.imshow("自定义", binary)
23
24 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY_INV)# 自定义阈值为150,大于150的是黑色 小于的是白色
25 print("阈值:%s" % ret)
26 cv.imshow("自定义反色", binary)
27
28 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TRUNC)# 截断 大于150的是改为150 小于150的保留
29 print("阈值:%s" % ret)
30 cv.imshow("截断1", binary)
31
32 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TOZERO)# 截断 小于150的是改为150 大于150的保留
33 print("阈值:%s" % ret)
34 cv.imshow("截断2", binary)
35
36 src = cv.imread("C://1.jpg")
37 threshold_image(src)
38 cv.waitKey(0)
39 cv.destroyAllWindows()
函数threshold()的参数说明:
cv.THRESH_BINARY | cv.THRESH_OTSU)#大律法,全局自适应阈值 参数0可改为任意数字但不起作用
cv.THRESH_BINARY | cv.THRESH_TRIANGLE)#TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
cv.THRESH_BINARY)# 自定义阈值为150,大于150的是白色 小于的是黑色
cv.THRESH_BINARY_INV)# 自定义阈值为150,大于150的是黑色 小于的是白色
cv.THRESH_TRUNC)# 截断 大于150的是改为150 小于150的保留
cv.THRESH_TOZERO)# 截断 小于150的是改为150 大于150的保留
(5)局部阈值 -代码实现
自适应阈值二值化函数根据图片一小块区域的值来计算对应区域的阈值,从而得到也许更为合适的图片。
dst = cv2.adaptiveThreshold(src, maxval, thresh_type, type, Block Size, C)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
- thresh_type: 阈值的计算方法,包含以下2种类型:cv2.ADAPTIVE_THRESH_MEAN_C; cv2.ADAPTIVE_THRESH_GAUSSIAN_C.
- type:二值化操作的类型,与固定阈值函数相同,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV.
- Block Size: 图片中分块的大小,必须为奇数
- C :阈值计算方法中的常数项
1 #局部阈值
2 def local_image(image):
3 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
4 cv.imshow("原来", gray)
5 binary1 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 25, 10) #blocksize必须为奇数
6 cv.imshow("局部1", binary1)
7 binary2 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)#高斯处理
8 cv.imshow("局部2", binary2)
(6)自己计算阈值-代码实现
图像的长宽以及灰度、RGB图像的像素原理分布
https://blog.csdn.net/qq_29540745/article/details/70256722
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #求出图像均值作为阈值来二值化
7 def custom_image(image):
8 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
9 cv.imshow("原来", gray)
10 h, w = gray.shape[:2]
11 m = np.reshape(gray, [1, w*h])#化为一维数组
12 mean = m.sum() / (w*h)
13 print("mean: ", mean)
14 ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
15 cv.imshow("二值", binary)
16
17
18 src = cv.imread("C://1.jpg")
19 custom_image(src)
20 cv.waitKey(0)
21 cv.destroyAllWindows()
参考:
https://blog.csdn.net/u011321546/article/details/79593195
https://www.cnblogs.com/ssyfj/p/9272615.html
python实现图像二值化的更多相关文章
- opencv python:图像二值化
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...
- Python+OpenCV图像处理(十)—— 图像二值化
简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...
- [python-opencv]图像二值化【图像阈值】
图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...
- 致敬学长!J20航模遥控器开源项目计划【开局篇】 | 先做一个开机界面 | MATLAB图像二值化 | Img2Lcd图片取模 | OLED显示图片
我们的开源宗旨:自由 协调 开放 合作 共享 拥抱开源,丰富国内开源生态,开展多人运动,欢迎加入我们哈~ 和一群志同道合的人,做自己所热爱的事! 项目开源地址:https://github.com/C ...
- C# 指针操作图像 二值化处理
/// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param& ...
- openCV_java 图像二值化
较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...
- MATLAB:图像二值化、互补图(反运算)(im2bw,imcomplement函数)
图像二值化.反运算过程涉及到im2bw,imcomplement函数,反运算可以这么理解:原本黑的区域变为白的区域,白的区域变为黑的区域. 实现过程如下: close all; %关闭当前所有图形窗口 ...
- OpenCV_基于局部自适应阈值的图像二值化
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...
- Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化
原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化 [函数名称] P分位法图像二值化 [算法说明] 所谓P分位法图像分割,就是在知道图像中目标所占的比率Rat ...
随机推荐
- Windows10系统下Java JDK下载、安装与环境变量配置(全网最全步骤)
1.首先要明确: JDK.JRE.JVM的含义 2.下载目前最新的JDK:Java SE Development Kit 17,传送门::https://www.oracle.com/java/tec ...
- WIN10下的VMware与Docker冲突的解决方案
VMARE版本升级到15.5以上 WIN10升级到2004版本以上 Hyper-V为开启状态
- Geocoding Tools(地理编码工具)
地理编码工具 # Process: 创建地址定位器 arcpy.CreateAddressLocator_geocoding("", "", "&qu ...
- java 文档自动生成的神器 idoc
写文档 作为一名开发者,每个人都要写代码. 工作中,几乎每一位开发者都要写文档. 因为工作是人和人的协作,产品要写需求文档,开发要写详细设计文档,接口文档. 可是,作为一个懒人,平时最讨厌的一件事情就 ...
- bzoj3262陌上花开 (CDQ,BIT)
题目大意 给定n朵花,每个花有三个属性,定义\(f[i]\)为满足\(a_j \le a_i\)且\(b_j \le b_i\)且\(c_j \le c_i\)的j的数量, 求\(d \in [0,n ...
- res目录下的结构
目录 res目录下的结构 drawable开头的文件夹 mipmap开头的文件夹 values开头的文件夹 layout文件夹 使用res目录下的资源 res目录下的结构 如果你展开res目录看一下, ...
- SpringBoot-thymeleaf-静态资源引入和接管
引入前端 templates下放html页面 static下放css.js.image等静态资源 添加thymeleaf命名空间 <html lang="en" xmlns: ...
- 2020.10.10--pta阶梯赛练习2补题
7-3.N个数求和 本题的要求很简单,就是求N个数字的和.麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式. 输入格式: 输入第一行给出一个正整数N(≤100).随后 ...
- Winform同步调用异步函数死锁原因分析、为什么要用异步
1.前言 几年前,一个开发同学遇到同步调用异步函数出现死锁问题,导致UI界面假死.我解释了一堆,关于状态机.线程池.WindowsFormsSynchronizationContext.Post.co ...
- C#与java TCP通道加密通信
背景说明 公司收费系统需要与银行做实时代收对接,业务协议使用我们收费系统的标准.但是银行要求在业务协议的基础上,使用银行的加密规则. 采用MD5计算报文摘要,保证数据的完整性 采用RSA256对摘要进 ...