参考[luogu7417],同样求出最短路,得到二元组$(x,y)$并排序,记$tot_{(x,y)}$为$(x,y)$的数量

其中所给的两个条件,即分别要求:

1.$(x,y)$只能和$(x\pm 1,y\pm 1)$连边

2.每一个$(x,y)$都向$(x-1,y\pm 1)$中的一个连边、$(x\pm 1,y-1)$中的一个连边

(另外,注意在$x+1=y$时$(x+1,y-1)$也即为$(x,y)$自身)

从前往后依次dp,假设考虑到二元组为$(x,y)$,将之前二元组分为两类——

(1)对于其中不为$(x,y)$的二元组之后已经不存在能通过连边满足第2个条件的点了,那么就需要保证第2个条件都已经满足,即状态中不需要再记录

(2)对于二元组$(x,y)$,之后也不存在$(x-1,y\pm 1)$的点了,因此$x$的一维必须要已经满足,并记录$y$的一维不满足的数个数即可

由此,即得到一个二维的状态,将其记为$f_{(x,y),i}$(其中$i$的定义参考(2)中)

关于转移,有以下四类本质不同的边:

(1)$(x,y)$与$(x-1,y+1)$中$y$的一维已经满足点的的边

(2)$(x,y)$与$(x-1,y+1)$中$y$的一维仍未满足的点的边

(3)$(x,y)$与$(x-1,y-1)$的边

(4)若$x+1=y$,$(x,y)$和$(x,y)$之间的边

先转移前两类边(避免出现三维状态),枚举后者的点数,转移即
$$
f_{(x,y),i}={tot_{(x,y)}\choose i}\sum_{j=0}^{tot_{(x-1,y+1)}}G(tot_{(x-1,y+1)},j,tot_{(x,y)}-i)f_{(x-1,y+1),j}
$$
(注意此时的$i$的定义并不为最终的定义,仅是一个中间过程)

其中$G(x,z,y)$表示在左边$x$个点和右边$y$个点连边的$2^{xy}$张图中,满足左边特定的$z$个点(如前$z$个点)和右边的$y$​个点度数均非0的方案数,对左边容斥有
$$
G(x,z,y)=\sum_{i=0}^{z}(-1)^{i}{z\choose i}(2^{x-i}-1)^{y}
$$
再转移第3类边,考虑转移的状态$f_{(x,y),j}$,这$j$个点必须都选择(否则$x$这一维不满足),因此转移即
$$
f_{(x,y),i}=\sum_{j=0}^{tot_{(x,y)}}{tot_{(x,y)}-j\choose i}(2^{tot_{(x-1,y-1)}}-1)^{tot_{(x,y)}-i}f_{(x,y),j}
$$
(这里是类似于01背包的,即后者$f_{(x,y),j}$应该是未转移第3类边的结果)

最后转移第4类边,其实这只是一个特例,更完整的情况应该是对于$(x+1,y-1)$不再出现的点(即其之后不再参与转移,之后也没有点可以帮助其满足第2个条件)将其的贡献乘到答案上

具体的,这类状态又分为两类:

1.$x+1\ne y$,这类状态不能通过自环使其满足条件,因此贡献即$f_{(x,y),0}$

2.$x+1=y$,这还可以通过自环使其满足条件

具体的,贡献即$\sum_{i=0}^{tot_{(x,y)}}G(tot_{(x,y)},i)f_{(x,y),i}$,其中$G(x,y)$表示在$x$个点中任意连边的$2^{\frac{x(x+1)}{2}}$张图中(允许自环),满足特定的$y$个点度数均非0的方案数,对这$y$​个点容斥有
$$
G(x,y)=\sum_{i=0}^{y}(-1)^{i}{y\choose i}2^{\frac{(x-i)(x-i+1)}{2}}
$$
不难发现$f$的状态数实际仅为$o(n)$,转移复杂度为$o(n^{2})$,总复杂度即$o(n^{3})$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define M 10005
5 #define mod 1000000007
6 #define oo 0x3f3f3f3f
7 #define ll long long
8 struct Edge{
9 int nex,to;
10 }edge[M*3];
11 queue<int>q;
12 int t,n,m,E,x,y,ans,mi[M],Mi[N][N],C[N][N],head[N<<1],d[N<<1],tot[N][N],g[N],f[N];
13 void add(int x,int y){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 head[x]=E++;
17 }
18 int G(int x,int y){
19 int ans=0;
20 for(int i=0;i<=y;i++){
21 int s=(ll)C[y][i]*mi[(x-i)*(x-i+1)/2]%mod;
22 if (i&1)ans=(ans-s+mod)%mod;
23 else ans=(ans+s)%mod;
24 }
25 return ans;
26 }
27 int G(int x,int z,int y){
28 int ans=0;
29 for(int i=0;i<=z;i++){
30 int s=(ll)C[z][i]*Mi[x-i][y]%mod;
31 if (i&1)ans=(ans-s+mod)%mod;
32 else ans=(ans+s)%mod;
33 }
34 return ans;
35 }
36 int main(){
37 mi[0]=1;
38 for(int i=1;i<M;i++)mi[i]=2*mi[i-1]%mod;
39 for(int i=0;i<N;i++){
40 Mi[i][0]=1;
41 for(int j=1;j<N;j++)Mi[i][j]=(ll)Mi[i][j-1]*(mi[i]-1)%mod;
42 }
43 for(int i=0;i<N;i++){
44 C[i][0]=C[i][i]=1;
45 for(int j=1;j<i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
46 }
47 scanf("%d",&t);
48 while (t--){
49 scanf("%d%d",&n,&m);
50 E=0,ans=1;
51 memset(head,-1,sizeof(head));
52 memset(d,oo,sizeof(d));
53 memset(tot,0,sizeof(tot));
54 for(int i=1;i<=m;i++){
55 scanf("%d%d",&x,&y);
56 add(x,y+n),add(y+n,x);
57 add(x+n,y),add(y,x+n);
58 }
59 d[1]=0;
60 q.push(1);
61 while (!q.empty()){
62 int k=q.front();
63 q.pop();
64 for(int i=head[k];i!=-1;i=edge[i].nex)
65 if (d[edge[i].to]==oo){
66 d[edge[i].to]=d[k]+1;
67 q.push(edge[i].to);
68 }
69 }
70 if (d[n+1]==oo){
71 for(int i=1;i<=n;i++)tot[0][min(d[i],d[i+n])]++;
72 for(int i=1;i<=n;i++)ans=(ll)ans*Mi[tot[0][i-1]][tot[0][i]]%mod;
73 printf("%d\n",ans);
74 continue;
75 }
76 for(int i=1;i<=n;i++)tot[d[i]+d[i+n]-d[n+1]>>1][min(d[i],d[i+n])]++;
77 for(int x=0;x<=n;x++){
78 memset(f,0,sizeof(f));
79 f[0]=1;
80 for(int y=x;y<=n;y++){
81 if (!tot[x][y]){
82 if (y-x<=(d[n+1]>>1))ans=(ll)ans*f[0]%mod;
83 else{
84 int s=0;
85 for(int i=0;i<=tot[x][y-1];i++)s=(s+(ll)G(tot[x][y-1],i)*f[i])%mod;
86 ans=(ll)ans*s%mod;
87 }
88 memset(f,0,sizeof(f));
89 f[0]=1;
90 continue;
91 }
92 if ((!x)&&(!y)){
93 f[0]=0,f[1]=1;
94 continue;
95 }
96 memcpy(g,f,sizeof(g));
97 memset(f,0,sizeof(f));
98 for(int i=0;i<=tot[x][y];i++){
99 int s=0;
100 for(int j=0;j<=tot[x][y-1];j++)s=(s+(ll)G(tot[x][y-1],j,tot[x][y]-i)*g[j])%mod;
101 f[i]=(f[i]+(ll)C[tot[x][y]][i]*s)%mod;
102 }
103 memcpy(g,f,sizeof(g));
104 memset(f,0,sizeof(f));
105 if (!x){
106 f[tot[x][y]]=g[0];
107 continue;
108 }
109 for(int i=0;i<=tot[x][y];i++)
110 for(int j=0;j<=tot[x][y];j++)f[i]=(f[i]+(ll)C[tot[x][y]-j][i]*Mi[tot[x-1][y-1]][tot[x][y]-i]%mod*g[j])%mod;
111 }
112 }
113 printf("%d\n",ans);
114 }
115 return 0;
116 }

[luogu7418]Counting Graphs P的更多相关文章

  1. Python Object Graphs — objgraph 1.7.2 documentation

    Python Object Graphs - objgraph 1.7.2 documentation Python Object Graphs¶ objgraph is a module that ...

  2. ARC(Automatic Reference Counting )技术概述

    此文章由Tom翻译,首发于csdn的blog 转自:http://blog.csdn.net/nicktang/article/details/6792972 Automatic Reference ...

  3. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  4. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  5. ZOJ3944 People Counting ZOJ3939 The Lucky Week (模拟)

    ZOJ3944 People Counting ZOJ3939 The Lucky Week 1.PeopleConting 题意:照片上有很多个人,用矩阵里的字符表示.一个人如下: .O. /|\ ...

  6. find out the neighbouring max D_value by counting sort in stack

    #include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...

  7. 1004. Counting Leaves (30)

    1004. Counting Leaves (30)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  8. 6.Counting Point Mutations

    Problem Figure 2. The Hamming distance between these two strings is 7. Mismatched symbols are colore ...

  9. 1.Counting DNA Nucleotides

    Problem A string is simply an ordered collection of symbols selected from some alphabet and formed i ...

随机推荐

  1. 洛谷4072 SDOI2016征途 (斜率优化+dp)

    首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...

  2. AutoCAD云产品平台ForgeViewer格式离线部署思路分析

    背景 在上一篇博文中CAD图DWG解析WebGIS可视化技术分析总结提到,利用AutoCAD的自有云产品 Autodesk Forge,能在浏览器中渲染 3D 和 2D 模型数据,实现DWG图形的We ...

  3. tcl概述

    tcl,全名tool command language,是一种通用的工具语言. 1)每个命令之间,通过换行符或者分号隔开: 2)tcl的每个命令包含一个或者多个单词,默认第一个单词表示命令,第二个单词 ...

  4. 力扣 - 剑指 Offer 53 - II. 0~n-1中缺失的数字

    题目 剑指 Offer 53 - II. 0-n-1中缺失的数字 思路1 排序数组找数字使用二分法 通过题目,我们可以得到一个规律: 如果数组的索引值和该位置的值相等,说明还未缺失数字 一旦不相等了, ...

  5. 安装多个版本的 JDK

    安装多个版本的 JDK 刚刚开始学 Java 的时候安装了 JDK9 版本,后续发现还是 JDK8 使用的多些,而又不想删除原先版本 因此安装两个版本的 JDK 在需要是切换一下即可 1. 安装第一个 ...

  6. 5.29日 Scrum Metting

    日期:2021年5月29日 会议主要内容概述:人员调整,xyl同时兼顾前后端:确定表格缩放策略和新图表添加:强调任务分配,总结工作. 一.进度情况## 组员 负责 两日内已完成的工作 后两日计划完成的 ...

  7. git常用的一些简单命令

    1.如果一个文件被修改了,但是还没有使用 git add 命令,此时想取消这次修改,需要执行的命令如下: git checkout -- 文件名 2.如果一个文件执行了 git add ,此时想取消这 ...

  8. mongodb的简单查询

    此篇文章简单的记录一下mongodb 的简单查询操作. 一.数据准备: db.persons.insertMany([ {'userId':1,name:'张三','age':20,'scores': ...

  9. 单片机I/O口推挽与开漏输出详解(力荐)

    推挽输出:可以输出高,低电平,连接数字器件;推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止. 开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电 ...

  10. RocketMQ源码详解 | Broker篇 · 其一:线程模型与接收链路

    概述 在上一节 RocketMQ源码详解 | Producer篇 · 其二:消息组成.发送链路 中,我们终于将消息发送出了 Producer,在短暂的 tcp 握手后,很快它就会进入目的 Broker ...