本文将同步发布于:

题目

题目链接:洛谷 AT4695AtCoder agc031_e

题意简述

在二维平面上,有 \(n\) 颗珠宝,第 \(i\) 颗珠宝在 \((x_i,y_i)\) 的位置,价值为 \(v_i\)。

现在有一个盗贼想要偷这些珠宝。

现在给出 \(m\) 个限制约束偷的珠宝,约束有以下四种:

  • 横坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。
  • 横坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。
  • 纵坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。
  • 纵坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。

现在问你在满足这些约束的条件下,盗贼偷的珠宝的最大价值和是多少。

题解

约束与转化

这个约束有点难办,似乎并没有可能对其进行动态规划,因此我们考虑额外添加信息。

我们添加什么信息呢?考虑到限制是有关珠宝数量的,我们决定添加一个 偷珠宝的总数 的信息。

设偷珠宝 \(k\) 颗,并且珠宝按照的横坐标排序被偷的顺序编号为 \(1\sim k\),那么前两种限制条件转化如下:

  • 横坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[b_i+1,k]\),那么一定有 \(x_{\texttt{id}}>a_i\)。
  • 横坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[1,k-b_i]\),那么一定有 \(x_{\texttt{id}}<a_i\)。

同理,我们可以得出珠宝按照的纵坐标排序被偷的顺序编号为 \(1\sim k\),那么后两种限制条件转化如下:

  • 纵坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[b_i+1,k]\),那么一定有 \(y_{\texttt{id}}>a_i\)。
  • 纵坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[1,k-b_i]\),那么一定有 \(y_{\texttt{id}}<a_i\)。

因此,我们得出,一个珠宝想要在按横坐标排序为第 \(i\),纵坐标排序为第 \(j\) 时被偷,需要满足的坐标范围。

化腐朽为神奇的网络流

考虑上面的条件也不是很好动态规划,我们需要想到一种化腐朽为神奇的算法——网络流。

由于这个题目有多个互不相关的限制:

  • 珠宝不能同时被偷两次及以上;
  • 偷的珠宝价值要最大化;

我们考虑运用费用流建立网络流模型。

因为我们要限制横坐标,所以必须要有 \(k\) 个横坐标的限制,对应 \(s\to p_{1\sim k}\),流量为 \(1\),费用为 \(0\)。。

因为我们要限制纵坐标,所以必须要有 \(k\) 个纵坐标的限制,对应 \(q_{1\sim k}\to t\),流量为 \(1\),费用为 \(0\)。

因为我们要限制一个点不能被选择多次,所以我们需要拆点限流,对应 \(a_{1\sim n}\to b_{1\sim n}\),流量为 \(1\),费用为 \(v_i\)。

考虑到我们上面需要满足的限制,按照限制加边 \(p_i\to a_j\) 和 \(b_j\to q_i\) 即可,流量为 \(1\),费用为 \(0\)。

如果上面的语言有点抽象,我们不妨画图理解。

整个建图如上所示,点数为 \(\Theta(n^2)\),边数 \(\Theta(n^2)\)。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
static char buf[1<<21],*p1=buf,*p2=buf;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} inline ll readll(void){
reg char ch=getchar();
reg ll res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} inline int max(reg int a,reg int b){
return a>b?a:b;
} inline int min(reg int a,reg int b){
return a<b?a:b;
} inline ll max(reg ll a,reg ll b){
return a>b?a:b;
} const int MAXN=80+5;
const int MAXM=320+5;
const int inf=0x3f3f3f3f; namespace Network{
const int MAXV=4*MAXN;
const int MAXE=(MAXN*MAXN*2+3*MAXN)*2;
const ll inf=0x3f3f3f3f3f3f3f3f;
int cnt,head[MAXV],to[MAXE],w[MAXE],Next[MAXE];
ll p[MAXE];
inline void Add_Edge(reg int u,reg int v,reg int len,reg ll val){
Next[++cnt]=head[u];
to[cnt]=v,w[cnt]=len,p[cnt]=val;
head[u]=cnt;
return;
}
inline void Add_Tube(reg int u,reg int v,reg int len,reg ll val){
Add_Edge(u,v,len,val);
Add_Edge(v,u,0,-val);
return;
}
bool inque[MAXV];
int cur[MAXV];
ll dis[MAXV];
queue<int> Q;
inline bool spfa(int s,reg int t){
fill(dis+s,dis+t+1,inf);
inque[s]=true,dis[s]=0,Q.push(s);
while(!Q.empty()){
reg int u=Q.front();
Q.pop();
inque[u]=false;
cur[u]=head[u];
for(reg int i=head[u];i;i=Next[i]){
int v=to[i];
if(dis[v]>dis[u]+p[i]&&w[i]){
dis[v]=dis[u]+p[i];
if(!inque[v]){
inque[v]=true;
Q.push(v);
}
}
}
}
return dis[t]!=inf;
}
bool vis[MAXV];
inline int dfs(reg int u,reg int t,reg ll lim){
if(u==t)
return lim;
vis[u]=true;
reg int flow=0;
for(reg int &i=cur[u];i;i=Next[i]){
reg int v=to[i];
if(dis[v]==dis[u]+p[i]&&w[i]&&!vis[v]){
reg int f=dfs(v,t,min(lim-flow,w[i]));
if(f){
flow+=f;
w[i]-=f,w[i^1]+=f;
if(flow==lim)
break;
}
}
}
vis[u]=false;
return flow;
}
inline pair<int,ll> dinic(reg int s,reg int t){
int res=0;
ll cost=0;
while(spfa(s,t)){
reg int flow=dfs(s,t,inf);
res+=flow,cost+=flow*dis[t];
}
return make_pair(res,cost);
}
inline void init(reg int s,reg int t){
cnt=1,fill(head+s,head+t+1,0);
return;
}
} struct Point{
int x,y;
ll v;
}; struct Limits{
char ch;
int a,b;
}; struct Interval{
int l,r;
inline Interval(reg int l=0,reg int r=0):l(l),r(r){
return;
}
inline bool in(reg int x)const{
return l<=x&&x<=r;
}
}; inline Interval cap(const Interval& a,const Interval& b){
return Interval(max(a.l,b.l),min(a.r,b.r));
} int n,m;
Point a[MAXN];
Limits b[MAXM]; int main(void){
n=read();
for(reg int i=1;i<=n;++i)
a[i].x=read(),a[i].y=read(),a[i].v=readll();
m=read();
for(reg int i=1;i<=m;++i){
do
b[i].ch=getchar();
while(!isalpha(b[i].ch));
b[i].a=read(),b[i].b=read();
}
reg ll ans=0;
for(reg int k=1;k<=n;++k){
static Interval invx[MAXN],invy[MAXN];
fill(invx+1,invx+k+1,Interval(-inf,inf));
fill(invy+1,invy+k+1,Interval(-inf,inf));
for(reg int i=1;i<=m;++i){
switch(b[i].ch){
case 'L':{
for(reg int j=b[i].b+1;j<=k;++j)
invx[j]=cap(invx[j],Interval(b[i].a+1,inf));
break;
}
case 'R':{
for(reg int j=1;j<=k-b[i].b;++j)
invx[j]=cap(invx[j],Interval(-inf,b[i].a-1));
break;
}
case 'D':{
for(reg int j=b[i].b+1;j<=k;++j)
invy[j]=cap(invy[j],Interval(b[i].a+1,inf));
break;
}
case 'U':{
for(reg int j=1;j<=k-b[i].b;++j)
invy[j]=cap(invy[j],Interval(-inf,b[i].a-1));
break;
}
}
}
reg int s=0,t=2*k+2*n+1;
Network::init(s,t);
for(reg int i=1;i<=k;++i){
Network::Add_Tube(s,i,1,0);
Network::Add_Tube(k+n+n+i,t,1,0);
}
for(reg int i=1;i<=n;++i)
Network::Add_Tube(k+i,k+n+i,1,-a[i].v);
for(reg int i=1;i<=k;++i)
for(reg int j=1;j<=n;++j){
if(invx[i].in(a[j].x))
Network::Add_Tube(i,k+j,1,0);
if(invy[i].in(a[j].y))
Network::Add_Tube(k+n+j,k+n+n+i,1,0);
}
pair<int,ll> res=Network::dinic(s,t);
if(res.first==k)
ans=max(ans,-res.second);
}
printf("%lld\n",ans);
return 0;
}

「题解」agc031_e Snuke the Phantom Thief的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. Windowsw核心编程 第13章 Windows内存结构

    第1 3章 Wi n d o w s的内存结构 13.1 进程的虚拟地址空间 每个进程都被赋予它自己的虚拟地址空间.对于 3 2位进程来说,这个地址空间是4 G B,因为3 2位指针可以拥有从0 x  ...

  2. NT 内核函数原型大全

    NTSYSAPINTSTATUSNTAPINtAcceptConnectPort(OUT PHANDLE PortHandle,IN PVOID PortIdentifier,IN PPORT_MES ...

  3. GUI基础知识点

    简介 GUI的核心技术:AWT(是Swing 的前身) Swing 不流行的原因 界面不美观 运行需要jre环境(可能一个项目的大小比jre还要大) 为什么我们需要学习 了解MVC架构和监听 AWT ...

  4. Kafka源码分析系列-目录(收藏不迷路)

    持续更新中,敬请关注! 目录 <Kafka源码分析>系列文章计划按"数据传递"的顺序写作,即:先分析生产者,其次分析Server端的数据处理,然后分析消费者,最后再补充 ...

  5. 精选Hive高频面试题11道,附答案详细解析(好文收藏)

    1. hive内部表和外部表的区别 未被external修饰的是内部表,被external修饰的为外部表. 区别: 内部表数据由Hive自身管理,外部表数据由HDFS管理: 内部表数据存储的位置是hi ...

  6. 在Visual Studio 中使用git——文件管理-中(五)

    在Visual Studio 中使用git--什么是Git(一) 在Visual Studio 中使用git--给Visual Studio安装 git插件(二) 在Visual Studio 中使用 ...

  7. node.js的包加载机制

    加载一个模块 require('moduleName'); 现在核心模块中加载,如果核心模块中没有,那么就去node_modules目录下去找,核心模块的优先级最高. 如果加载模块式省略了文件的后缀名 ...

  8. S3待机 S4休眠

    https://hceng.cn/2018/01/18/Linux%E7%94%B5%E6%BA%90%E7%AE%A1%E7%90%86/ 1.1系统睡眠模型Suspend On (on) S0 - ...

  9. 一文详解 Linux 系统常用监控工一文详解 Linux 系统常用监控工具(top,htop,iotop,iftop)具(top,htop,iotop,iftop)

    一文详解 Linux 系统常用监控工具(top,htop,iotop,iftop)     概 述 本文主要记录一下 Linux 系统上一些常用的系统监控工具,非常好用.正所谓磨刀不误砍柴工,花点时间 ...

  10. [转载]性能测试工具 2 步解决 too many open files 的问题,让服务器支持更多连接数

    [转载]性能测试工具 2 步解决 too many open files 的问题,让服务器支持更多连接数 大话性能 · 2018年10月09日 · 最后由 大话性能 回复于 2018年10月09日 · ...