Codeforces 979E Kuro and Topological Parity(dp)
题意:有 \(n\) 个点,每个点要么被涂黑,要么被涂白,要么没有颜色。
现在你要:
- 给没有颜色的点图上颜色(黑色或白色)
- 在这 \(n\) 个点中连若干条有向边,可以不连通。但是只能从编号小的点连向编号大的点,且不能有重边和自环。
定义一条路径 \(p_1 \to p_2 \to \dots p_k\) 是好的,当且仅当对于 \(i \in [1,k-1]\),\(c_{p_i} \neq c_p_{i+1}\)。
特别地,一个点组成的路径也是好的。
求有多少种涂色+构图的方法使得原图中好的路径的个数模 \(2\) 余 \(k\),答案对 \(10^9+7\) 取模。
\(1 \leq n \leq 50\),其实可以加强到 \(1 \leq n \leq 10^5\)
先抛开构图不谈,考虑对于已知的图 \(G\),怎样求它的好的路径的条数。
由于我们只能从编号小的点向编号大的点连边,那么原序列的一种拓扑序一定是 \(1,2,3,\dots n\)。
用拓扑排序的方法,设 \(g_x=\) 以 \(x\) 结尾的好的路径的条数。
那么 \(g_x=\sum\limits_{(y,x)\in E \& c_y\neq c_x}g_y+1\),非常好理解,枚举上一个点转移,或者单独成一条路径。
总条数 \(=\sum g_i\)。
回到本题上来,本题的 \(g_x\) 都是在 \(\mod 2\) 意义上的。
分析上面那个 \(g_x\) 的式子,不难发现,假设我们要连指向 \(x\) 的边,那么对于 \(y<x\) 且 \(c_y=c_x\) 的点,边 \((y,x)\) 存不存在是无关紧要的,因为它不会影响 \(g_x\) 的奇偶性。
同理,\(g_y \mod 2=0\) 的 \(y\) 也不会对 \(g_x\) 的奇偶性产生影响。
那么现在问题就在于 \(g_y \mod 2=1\) 且 \(c_x \neq c_y\) 的点存不存在。
假设存在至少 \(1\) 个这样的点,考虑随便连剩下 \(i-2\) 条边,共 \(2^{i-2}\) 条边,那么会有怎样的情况呢?
- 如果这 \(i-2\) 条边对 \(g_x\) 的贡献为奇数,那么连边 \((y,x)\) 会导致 \(g(x)\mod 2=0\),反之 \(g(x)\mod 2=1\)
- 如果这 \(i-2\) 条边对 \(g_x\) 的贡献为偶数,那么连边 \((y,x)\) 会导致 \(g(x)\mod 2=1\),反之 \(g(x)\mod 2=0\)
由此可见,无论剩下 \(i-2\) 条边连或不连,你都可以控制 \((y,x)\) 的连或不连来达到你想要的奇偶性。
这个性质对我们的解法有极大的启发性。
设 \(f_{i,j,b,w}\) 表示:
- 考虑到第 \(i\) 个点
- 目前好的路径的总条数 \(\mod 2\) 余 \(j\)
- 是否存在 \(g_x \mod 2=1\) 的黑点的状态为 \(b\)
- 是否存在 \(g_x \mod 2=1\) 的白点的状态为 \(w\)
采用正推进行转移。枚举 \(i+1\) 号点填的颜色,这里以黑色为例。
- 如果 \(w=1\),由以上性质,\(g_{i+1}\) 为奇数和偶数的情况各占一半,各 \(2^{i-1}\),再根据乘法原理乘个 \(dp_{i,j,b,w}\) 即可。
- 如果 \(w=0\),由以上性质,\(g_1,g_2,\dots,g_i\) 要么对 \(g_{i+1}\) 没有贡献,要么对 \(g_{i+1}\) 的贡献为偶数。再加上原本就有的 \(1\),故对于所有 \(2^i\) 种连法,都有 \(g_{i+1}\) 为奇数。乘法原理转移即可。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<int,int> pii;
const int MOD=1e9+7;
inline void inc(int &x,int y){x+=y;if(x>=MOD) x-=MOD;}
int n,p,a[55],dp[55][2][2][2],pw2[55];
//dp[i][j][b][w]
//we have connected edges among the first i points
//the parity of the number of good paths at present is j
//whether there exists "odd black" is b
//whether there exists "odd white" is w
int main(){
scanf("%d%d",&n,&p);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
pw2[0]=1;
for(int i=1;i<=n;i++) pw2[i]=pw2[i-1]*2%MOD;
if(a[1]!=1) dp[1][1][1][0]=1;
if(a[1]!=0) dp[1][1][0][1]=1;
for(int i=1;i<n;i++) for(int j=0;j<2;j++)
for(int b=0;b<2;b++) for(int w=0;w<2;w++){
if(a[i+1]!=1){//black
if(w){
inc(dp[i+1][j^1][1][1],1ll*dp[i][j][b][w]*pw2[i-1]%MOD);//g[i+1] is odd
inc(dp[i+1][j][b][1],1ll*dp[i][j][b][w]*pw2[i-1]%MOD);//g[i+1] is even
}
else inc(dp[i+1][j^1][1][0],1ll*dp[i][j][b][w]*pw2[i]%MOD);
}
if(a[i+1]!=0){//white
if(b){
inc(dp[i+1][j^1][1][1],1ll*dp[i][j][b][w]*pw2[i-1]%MOD);
inc(dp[i+1][j][1][w],1ll*dp[i][j][b][w]*pw2[i-1]%MOD);
}
else inc(dp[i+1][j^1][0][1],1ll*dp[i][j][b][w]*pw2[i]%MOD);
}
}
// for(int i=1;i<=n;i++) for(int j=0;j<2;j++)
// for(int b=0;b<2;b++) for(int w=0;w<2;w++)
// printf("%d %d %d %d %d\n",i,j,b,w,dp[i][j][b][w]);
int ans=0;
for(int b=0;b<2;b++) for(int w=0;w<2;w++)
inc(ans,dp[n][p][b][w]);
printf("%d\n",ans);
return 0;
}
Codeforces 979E Kuro and Topological Parity(dp)的更多相关文章
- Codeforces 979E Kuro and Topological Parity - 动态规划 - 组合数学
题目传送门 传送点 题目大意 给定$n$个标号依次为$1, 2, \cdots, n$的点,其中一些点被染成一些颜色,剩下的点没有染色.你需要添加一些有向边并将剩下的点染色,满足有向边从编号小的一端指 ...
- codeforces 425C Sereja and Two Sequences(DP)
题意读了好久才读懂....不知道怎么翻译好~~请自便~~~ http://codeforces.com/problemset/problem/425/C 看懂之后纠结好久...不会做...仍然是看题解 ...
- Codeforces 629C Famil Door and Brackets(DP)
题目大概说给一个长m的括号序列s,要在其前面和后面添加括号使其变为合法的长度n的括号序列,p+s+q,问有几种方式.(合法的括号序列当且仅当左括号总数等于右括号总数且任何一个前缀左括号数大于等于右括号 ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- codeforces #267 C George and Job(DP)
职务地址:http://codeforces.com/contest/467/problem/C 太弱了..这题当时都没做出来..思路是有的,可是自己出的几组数组总是过不去..今天又又一次写了一遍.才 ...
- Codeforces 403D: Beautiful Pairs of Numbers(DP)
题意:转换模型之后,就是1~n个数中选k个,放到一个容量为n的背包中,这个背包还特别神奇,相同的物品摆放的位置不同时,算不同的放法(想象背包空间就是一个长度为n的数组,然后容量为1的物体放一个格子,容 ...
- CodeForces B. The least round way(dp)
题目链接:http://codeforces.com/problemset/problem/2/B B. The least round way time limit per test 5 secon ...
- codeforces 459 E. Pashmak and Graph(dp)
题目链接:http://codeforces.com/contest/459/problem/E 题意:给出m条边n个点每条边都有权值问如果两边能够相连的条件是边权值是严格递增的话,最长能接几条边. ...
- codeforces 486 E. LIS of Sequence(dp)
题目链接:http://codeforces.com/contest/486/problem/E 题意:给出n个数,如果一个数满足不属于最长递增序列,那么输出1,如果属于最长递增序列但是不属于所有最长 ...
随机推荐
- Boost Started on Windows
Boost 官网指南 Boost C++ Libraries Boost Getting Started on Windows - 1.77.0 ① 下载 Boost.7z包 下载 .7z包 boos ...
- TCC分布式事务的实现原理
目录 一.写在前面 二.业务场景介绍 三.进一步思考 四.落地实现TCC分布式事务 (1)TCC实现阶段一:Try (2)TCC实现阶段二:Confirm (3)TCC实现阶段三:Cancel 五.总 ...
- Redis使用过程中有哪些注意事项?看看BAT这类的公司是正确使用Redis的!!
Redis使用过程中要注意的事项 Redis使用起来很简单,但是在实际应用过程中,一定会碰到一些比较麻烦的问题,常见的问题有 redis和数据库数据的一致性 缓存雪崩 缓存穿透 热点数据发现 下面逐一 ...
- 【UE4】GAMES101 图形学作业2:光栅化和深度缓存
总览 在上次作业中,虽然我们在屏幕上画出一个线框三角形,但这看起来并不是那么的有趣.所以这一次我们继续推进一步--在屏幕上画出一个实心三角形,换言之,栅格化一个三角形.上一次作业中,在视口变化之后,我 ...
- Java:并发笔记-04
Java:并发笔记-04 说明:这是看了 bilibili 上 黑马程序员 的课程 java并发编程 后做的笔记 本章内容-3 线程状态转换 活跃性 Lock 3.10 重新理解线程状态转换 假设有线 ...
- 【二食堂】Alpha - Scrum Meeting 7
Scrum Meeting 7 例会时间:4.17 11:40 - 12:00 进度情况 组员 昨日进度 今日任务 李健 1. 继续文本区域的开发,先完成目前简陋的添加方式,再区实现勾选功能issue ...
- 2021.8.15考试总结[NOIP模拟40]
T1 送花 线段树.枚举右端点,线段树记录左端点对应的值. 每次对当前颜色上上次出现的位置到上次出现的位置区间减,上次出现的位置到当前位置区间加. $code:$ 1 #include<bits ...
- 生产环境部署springcloud微服务启动慢的问题排查
今天带来一个真实案例,虽然不是什么故障,但是希望对大家有所帮助. 一.问题现象: 生产环境部署springcloud应用,服务部署之后,有时候需要10几分钟才能启动成功,在开发测试环境则没有这个问题. ...
- 鸿蒙轻内核M核的故障管家:Fault异常处理
摘要:本文先简单介绍下Fault异常类型,向量表及其代码,异常处理C语言程序,然后详细分析下异常处理汇编函数实现代码. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列十八 Fault异常处理& ...
- 算法:杨辉三角(Pascal's Triangle)
一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...