Codeforces 1519F - Chests and Keys(暴搜+以网络流为状态的 dp)
难度终于出来了……又独立切掉一道 *3200,凯信(所以我已经独立切掉三道 *3200 了?)
首先考虑我们已经知道了每个宝箱上有哪些锁,怎样求 Bob 的最大利益,这显然就是一个最大权闭合子图的模板,我们将箱子看作左部点,钥匙看作右部点,对于每个箱子 \(i\) 我们连一条 \(S\) 到该箱子表示的点,容量为 \(a_i\) 的边,对于每个钥匙 \(j\) 我们连一条该钥匙所表示的点到 \(T\),容量为 \(b_i\) 的边,最后对于每个箱子 \(i\) 上挂有的锁 \(j\) 连一条箱子 \(i\) 表示的点到钥匙 \(j\) 表示的点,容量为 \(\infty\) 的边,根据最小割那套理论最大利益就是 \(\sum a_i\) 减去建出图来的最小割即最大流即可。我们希望最大利益 \(\le 0\),故最大流需 \(\ge\sum a_i\),而显然与源点相连的点的边的总流量都只有 \(\sum a_i\),故所有与源点相连的边必须满流。
因此题目转化为,最少需要花费多少的代价在左部点与右部点间连边,使得得到的图跑完最大流后所有与源点相连的边都满流,直接用贪心之类的方法显然是不可行的,不过注意到此题数据范围出乎意料地小——\(a_i\le 4,n\le 6\),也就是说所有与源点相连的边的流量总共最多只有 \((4+1)^6=15625\) 种可能,我们考虑以此为状态设计 \(dp\),我们记 \(dp_{i,j}\) 表示已经连好了前 \(i\) 个右部点相关的边,当前所有与源点相连的边的流量的状态为 \(j\) 的最小花费(注:在下文中,为了表述方便,我们用一个 \(n\) 元组 \((x_1,x_2,\cdots,x_n)\) 表示这样的状态 \(j\),\(x_i\) 表示源点与 \(i\) 相连的边的流量),考虑转移,我们考虑 \(i+1\) 到汇点的 \(b_{i+1}\) 的流量的来源,假设 \(j\to i+1\) 的边流了 \(y_j\) 的流量,那么需要的代价 \(C=\sum\limits_{j=1}^n[y_j>0]\times c_{j,i+1}\),总转移方程为 \(dp_{i+1,(x_1+y_1,x_2+y_2,\cdots,x_n+y_n)}\leftarrow dp_{i,(x_1,x_2,\cdots,x_n)}+C\),至于这个 \(y_j\) 怎么处理,再套个背包类的 \(dp\) 当然是没问题的,不过由于 \(b_i\) 数据范围也很小,因此可以直接无脑暴搜 \(y_i\),显然 \(y_i\) 的个数是与划分数有关的,根据隔板原理暴搜次数最多是 \(\dbinom{9}{4}+\dbinom{8}{3}+\dbinom{7}{2}+\dbinom{6}{1}+\dbinom{5}{0}=210\),是不会出问题的。最后输出 \(dp_{n,(a_1,a_2,\cdots,a_n)}\) 即可
最后是这个状态怎么处理,我的做法是将 \((x_1,x_2,\cdots,x_n)\) 进行八进制压缩压成一个 \(2^{18}\) 以内的数再重新编号,如果用 vector
保存复杂度会多一个 \(n\),不知道能不能跑得过(大雾
总复杂度 \(15625\times 6^2\times 210\),不过似乎跑得飞快?最慢的一个点才跑了 31ms。
const int MAXN=6;
const int MAXP=15625;
int n,m,a[MAXN+3],b[MAXN+3],c[MAXN+3][MAXN+3];
ll dp[MAXN+3][MAXP+5];
int rid[MAXP+5],id[1<<18];
int idnum=0;
void dfs(int x,int cur){
if(x==n+1){rid[++idnum]=cur;id[cur]=idnum;return;}
for(int i=0;i<=a[x];i++) dfs(x+1,cur+(i<<(3*(x-1))));
}
void dfs2(int x,int t,int msk,int lft,ll val){
if(!lft||x==n+1){chkmin(dp[t][id[msk]],val);return;}
for(int i=0;i<=min(a[x]-(msk>>(3*(x-1))&7),lft);i++){
dfs2(x+1,t,msk+(i<<(3*(x-1))),lft-i,val+(i>0)*c[x][t]);
}
}
int main(){
scanf("%d%d",&n,&m);int sa=0,sb=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]),sa+=a[i];
for(int i=1;i<=m;i++) scanf("%d",&b[i]),sb+=b[i];
if(sa>sb) return puts("-1"),0;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&c[i][j]);
dfs(1,0);memset(dp,63,sizeof(dp));dp[0][id[0]]=0;
for(int i=0;i<m;i++){
vector<int> pos;
for(int l=1;l<=idnum;l++){
if(dp[i][l]>=0x3f3f3f3f3f3f3f3fll) continue;
dfs2(1,i+1,rid[l],b[i+1],dp[i][l]);
}
} int lst=0;for(int i=1;i<=n;i++) lst|=(a[i]<<(3*(i-1)));
if(dp[m][id[lst]]<0x3f3f3f3f3f3f3f3fll) printf("%lld\n",dp[m][id[lst]]);
else puts("-1");
return 0;
}
Codeforces 1519F - Chests and Keys(暴搜+以网络流为状态的 dp)的更多相关文章
- Codeforces Round #238 (Div. 2) D. Toy Sum 暴搜
题目链接: 题目 D. Toy Sum time limit per test:1 second memory limit per test:256 megabytes 问题描述 Little Chr ...
- codeforces 339C Xenia and Weights(dp或暴搜)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Xenia and Weights Xenia has a set of weig ...
- 【BZOJ-3033】太鼓达人 欧拉图 + 暴搜
3033: 太鼓达人 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 204 Solved: 154[Submit][Status][Discuss] ...
- c++20701除法(刘汝佳1、2册第七章,暴搜解决)
20701除法 难度级别: B: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 输入正整数n,按从小到大的顺序输出所有 ...
- poj 3080 Blue Jeans(水题 暴搜)
题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...
- Sicily1317-Sudoku-位运算暴搜
最终代码地址:https://github.com/laiy/Datastructure-Algorithm/blob/master/sicily/1317.c 这题博主刷了1天,不是为了做出来,AC ...
- Usaco 2.3 Zero Sums(回溯DFS)--暴搜
Zero SumConsider the sequence of digits from 1 through N (where N=9) in increasing order: 1 2 3 ... ...
- HDU4403(暴搜)
A very hard Aoshu problem Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
- suoi62 网友跳 (暴搜+dp)
传送门 sbw太神啦orz 首先N<=20可以直接暴搜 然后玄学剪枝可以过18个点 那么N<=40的时候,就把它拆成两半分别暴搜,再用dp拼起来 对于前半段,设f[i][j]是开始高度为i ...
随机推荐
- FastAPI 学习之路(五十三)根据环境不同连接不同数据库
在实际的开发过程中,我们数据库,可以根据连接的环境不一样,我们会拆分成不一样的数据库,根据我们所要用的环境来选择对应的数据库即可,那么我们应该如何去实现根据选择去选择不一样的数据库呢. 首先,我们找一 ...
- [no code][scrum meeting] Beta 4
例会时间:5月16日11:30,主持者:伦泽标 下次例会时间:5月18日11:30,主持者:叶开辉 一.工作汇报 人员 昨日完成任务 明日要完成的任务 乔玺华 完成整体框架设计与登录逻辑 与后端对接 ...
- OO_JAVA_电梯运行模拟_单元总结
电梯运行模拟--三次作业总结 目录 电梯运行模拟--三次作业总结 总体遵循的设计思路 逻辑解耦 电梯与调度器解耦 楼层信息的存储和变更与电梯.调度器解耦 调度器运行流程解耦 第一次电梯,蠢笨串行先到先 ...
- js_数据类型转换
转整数----parseInt(string,radix) 1)类似于从左往右匹配数字,直到匹配到非数字结束,并返回匹配到的数字.同parseFloat(). parseInt("123&q ...
- (三)、Docker常用基础命令
1.Docker 帮助命令 帮助命令: docker version 查看版本 docker info 查询docker详细信息 docker --help 查看命令帮助 2.Docker 镜像命令 ...
- Noip模拟15 2021.7.14
T1 夜莺与玫瑰 题目越发的变态起来... 这题刚开始看超级像仪仗队,好不容易码完欧拉函数后尝试×2后输出但不对!! 于是选择了跳过.... 正解居然是莫比乌斯函数....我也是醉了 预处理完就剩下$ ...
- poj 3417 Network (LCA,路径上有值)
题意: N个点,构成一棵树.给出这棵树的结构. M条边,(a1,b1)...(am,bm),代表给树的这些点对连上边.这样就形成了有很多环的一个新"树". 现在要求你在原树中断一条 ...
- element-UI 中的upload组件如何添加token?
<el-upload :show-file-list="false" :on-error="errmsg" :headers="headers& ...
- LoadRunner12回放与录制
系统版本 本人的操作系统是win10 版本是loadrunner12. 开启loadrunner自带的机票预订服务器 找到loadrunner自带的机票预订测试服务器下图中点击启动 如下图所示代表启动 ...
- 一.Promise入门准备阶段
一.Promise入门准备阶段 1.区别实例对象呵函数对象 2.两种类型的回调函数(同步与异步) 2.1 同步回调 2.2 异步回调 3.JS的error处理 3.1 错误的类型 3.2 错误处理与错 ...