除了最后一题都比较简单就写一起了


P4450-双亲数

题目链接:https://www.luogu.com.cn/problem/P4450

题目大意

给出\(A,B,d\)求有多少对\((a,b)\)满足\(gcd(a,b)=d\)且\(a\in[1,A],b\in[1,B]\)

解题思路

很显然的容斥,枚举\(d\)的倍数\(i\),然后容斥系数就是\(\mu(\frac{i}{d})\)。

时间复杂度\(O(n)\)

code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+10;
int A,B,d,mu[N],pri[N],cnt;
long long ans;
bool v[N];
int main()
{
scanf("%d%d%d",&A,&B,&d);
mu[1]=1;
for(int i=2;i<N;i++){
if(!v[i])pri[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
if(A>B)swap(A,B);
for(int i=d;i<=A;i+=d)
ans+=1ll*(A/i)*(B/i)*mu[i/d];
printf("%lld\n",ans);
}

P5221-Product

题目链接:https://www.luogu.com.cn/problem/P5221

题目大意

给出\(n\)求

\[\prod_{i=1}^n\prod_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}
\]

解题思路

\(\text{CYJian}\)的题啊,时限\(0.2s?\)不过只是看起来花里胡哨,没有其他\(\text{CYJian}\)的题那么难。

先简单把\(lcm\)拆出来化一下式子

\[\left(\prod_{i=1}^n\prod_{j=1}^ni\times j\right)\frac{1}{\left(\prod_{i=1}^{n}\prod_{j=1}^ngcd(i,j)\right)^2}
\]

左边那个很容易求就是\((n!)^{2n}\),右边那个因为是乘积所以很好做,直接枚举质数幂\(d^e\),让有\(\lfloor\frac{n}{d^e}\rfloor^2\)对数的\(gcd\)包含\(d^e\),会产生这么多的贡献,但是因为在\(d^{e-1}\)的时候也统计过一次,所以只需要产生\(d\)的贡献就好了。

时间复杂度\(O(n\log n)\)

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=104857601;
ll n,ans,cnt,pri[N];
bool v[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld",&n);ans=1;
for(ll i=2;i<=n;i++){
if(!v[i]){
for(ll j=i;j<=n;j=j*i)
ans=ans*power(i,(n/j)*(n/j)%(P-1))%P;
pri[++cnt]=i;
}
for(ll j=1;j<=cnt&&i*pri[j]<=n;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
ans=power(ans*ans%P,P-2);
ll f=1;
for(ll i=1;i<=n;i++)f=f*i%P;
f=power(f,2*n);ans=ans*f%P;
printf("%lld",ans);
return 0;
}

P6055-[RC-02]GCD

题目链接:https://www.luogu.com.cn/problem/P6055

题目大意

给出\(n\)求

\[\sum_{i=1}^n\sum_{j=1}^n\sum_{p=1}^{\lfloor\frac{n}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{n}{j}\rfloor}[gcd(i,j)=1][gcd(p,q)=1]
\]

解题思路

刚开始还以为可以直接暴力整除分块+杜教筛欧拉函数然后\(O(n^{\frac{3}{4}})\)搞,然后发现时限是\(1s\)。

发现这个式子的顺序很奇怪,特意的把\(j\)放在了里面。这个提示我们\(j\)其实是在枚举\(p\)和\(q\)的\(gcd\)。

而又\(j\)和\(i\)互质,其实这个式子的真正目的是对于每个\(i\)求有多少对数的\(gcd\)和\(i\)互质然后求和。换成式子就是

\[\sum_{i=1}^n\sum_{q=1}^n\sum_{p=1}^n[gcd(gcd(q,p),i)=1]
\]

就是三对数之间互质的对数,之间上莫反就可以了

\[\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor^3\mu(i)
\]

\(n\)比较大,要用杜教筛筛一下\(mu\)

时间复杂度\(O(n^{\frac{2}{3}})\)?


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
const ll N=1e7+10,P=998244353;
ll n,cnt,pri[N],mu[N],ans;
map<ll,ll> mp;
bool v[N];
ll get_sum(ll n){
if(mp.find(n)!=mp.end())return mp[n];
if(n<N)return mu[n];
ll rest=1;
for(ll l=2,r;l<=n;l=r+1)
r=n/(n/l),(rest+=P-(r-l+1)*get_sum(n/l))%=P;
return mp[n]=rest;
}
signed main()
{
scanf("%lld",&n);mu[1]=1;
for(ll i=2;i<N;i++){
if(!v[i])pri[++cnt]=i,mu[i]=-1;
for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
for(ll i=1;i<N;i++)(mu[i]+=mu[i-1])%=P;
for(ll l=1,r;l<=n;l=r+1){
r=n/(n/l);
ll p=n/l;p=p*p%P*p%P;
(ans+=p*(get_sum(r)-get_sum(l-1))%P)%=P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}

P4450-双亲数,P5221-Product,P6055-[RC-02]GCD【莫比乌斯反演,杜教筛】的更多相关文章

  1. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  2. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  3. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  4. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  5. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  6. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  7. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  8. 【题解】Luogu P4450 双亲数

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 设F(t)表示满足gcd(x,y)%t=0的数对个数,f(t)表示满足gcd(x,y)=t的数对个数,实际上答案就是f(d) 这就满足莫比乌斯反演 ...

  9. 洛谷 - P4450 - 双亲数 - 整除分块

    https://www.luogu.org/fe/problem/P4450 应该不分块也可以. 求\(F(n,m,d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^ ...

随机推荐

  1. nodejs koa2 设置 静态资源目录

    参考这篇文章:https://blog.csdn.net/qq_38262910/article/details/89147571?utm_medium=distribute.pc_relevant_ ...

  2. NameNode&Secondary NameNode 工作机制

    NameNode&Secondary NameNode 工作机制 NameNode: 1.启动时,加载编辑日志和镜像文件到内存 2.当客户端对元数据进行增删改,请求NameNode 3.Nam ...

  3. linux修改源镜像地址

    1.1 CentOS修改yum源镜像地址为:mirrors.163.com (也可以改为阿里云镜像) 1.首先备份系统自带yum源配置文件/etc/yum.repos.d/CentOS-Base.re ...

  4. LVS本地实验环境搭建

    文中实验需要使用以下软件: CentOS的镜像 Virtual Box GNS3 0.实验前的准备工作 0.1.修改yum源 为了方便安装软件,我们设置yum源为公司yum源 1.直接复制公司机器上的 ...

  5. 博观约取系列 ~ 探测Bert Finetune对向量空间的影响

    熟悉NLP的同学对Bert Finetune一定不陌生,基本啥任务上来都可以Bert Finetune试一把.可是模型微调一定比直接使用预训练模型效果好么?微调究竟对Bert的向量空间产生了哪些影响嘞 ...

  6. Qt5创建模态和非模态对话框

    1.模态对话框创建: 第一种方法: QDialog dialog(this); dialog.exec(); this为该对话框的父窗口. 第二种方法: QDialog *dialog = new Q ...

  7. 基于Linux系统下Apache服务器的安装部署

    企业中常用的web服务,用来提供http://(超文本传输协议). web系统是客户端/服务器模式的,所以应该有服务器和客户端里两个部分.常用的服务器程序时Apache,常用的客户端程序是浏览器.ww ...

  8. GoLang设计模式01 - 建造者模式

    建造者模式是一种创建型模式,主要用来创建比较复杂的对象. 建造者模式的使用场景: 建造者模式通常适用于有多个构造器参数或者需要较多构建步骤的场景.使用建造者模式可以精简构造器参数的数量,让构建过程更有 ...

  9. Jenkins 使用PowerShell插件部署Net5项目

    Jenkins安装 PowerShell plugin 插件 新建自由项目 拖到 构建 处,添加 PowerShell 构建 贴入下方脚本即可 # 变量 $ProjectPath = "E: ...

  10. shell脚本书写

    #!/bin/bash #指定脚本默认使用的命令解释器 第1行 幻数 #!/usr/bin/python #!/bin/awk #!/bin/sed