正题

题目连接:http://www.51nod.com/Challenge/Problem.html#problemId=1675


题目大意

给出两个长度为\(n\)的序列\(a,b\),求有多少对\(x,y\)满足

\[gcd(x,y)=1且a_{b_x}=b_{a_y}
\]

\(1\leq n\leq 10^5,1\leq a_i,b_i\leq n\)


解题思路

额挺明显的一个莫反,枚举约数\(d\)的时候用一个数组统计一下有多少个\(a_{b_x}\)就好了。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10;
ll n,cnt,ans,a[N],b[N],c[N],mu[N],pri[N/10];
bool v[N];
void Prime(){
mu[1]=1;
for(ll i=2;i<=n;i++){
if(!v[i])pri[++cnt]=i,mu[i]=-1;
for(ll j=1;j<=cnt&&i*pri[j]<=n;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
return;
}
signed main()
{
scanf("%lld",&n);
for(ll i=1;i<=n;i++)scanf("%lld",&a[i]);
for(ll i=1;i<=n;i++)scanf("%lld",&b[i]);
Prime();
for(ll i=1;i<=n;i++){
ll sum=0;
for(ll j=i;j<=n;j+=i)c[a[b[j]]]++;
for(ll j=i;j<=n;j+=i)sum+=c[b[a[j]]];
for(ll j=i;j<=n;j+=i)c[a[b[j]]]--;
ans+=sum*mu[i];
}
printf("%lld\n",ans);
return 0;
}

51nod1675-序列变换【莫比乌斯反演】的更多相关文章

  1. 51Nod1675 序列变换 数论 莫比乌斯反演

    原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...

  2. BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

    http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...

  3. 7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演

    神题! 一眼powerful number 复习了一下+推半天. 可以发现G函数只能为\(\sum_{d}[d|x]d\) 不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n ...

  4. 51nod1675 序列变换

    link 题意: 给定长为n的序列a,b,下标从1开始,问有多少对x,y满足gcd(x,y)=1且$a_{b_x}=b_{a_y}$? $n\leq 10^5.$ 题解: $a_{b_x}$和$b_{ ...

  5. 51Nod 欢乐手速场1 B 序列变换[容斥原理 莫比乌斯函数]

    序列变换 alpq654321 (命题人)   基准时间限制:1 秒 空间限制:131072 KB 分值: 40 lyk有两序列a和b. lyk想知道存在多少对x,y,满足以下两个条件. 1:gcd( ...

  6. codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)

    题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...

  7. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  8. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  9. BZOJ 1114 Number theory(莫比乌斯反演+预处理)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...

  10. 【莫比乌斯反演】BZOJ1101 [POI2007]zap

    Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...

随机推荐

  1. vs2019编写c++的静态链接库并自己使用

    参考网址:https://blog.csdn.net/flame333/article/details/108346305 静态链接库1.新建一个静态库项目,其中有两个头文件,两个源文件 其中比较重要 ...

  2. GPRS RTU设备OPC Server接口C# 实现

    通过本OPC Server程序接口可为用户提供以OPC标准接口访问远程GPRS/3G/以太网 RTU设备实时数据的方式.从而方便实现GPRS/3G/以太网 RTU设备与组态软件或DCS系统的对接.本程 ...

  3. 【C/C++】C/C++中的内存四区

    1 代码区 存放 CPU 执行的机器指令.通常代码区是可共享的(即另外的执行程序可以调用它),使其可共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可.代码区通常是只读的,使其只读的原因是 ...

  4. jQuery中的基本选择器(四、一):* 、 . 、element(直接标签名)、 或者用逗号隔开跟多个

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. 设计模式<一>

    设计原则1.找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起. 2.针对接口编程,而不是针对实现编程. 3.多用组合,少用继承. 一:策略模式,定义了算法族,分别封装起来 ...

  6. mybatis相关函数

    MyBatis中的if....else...表示方法 <choose> <when test=""> //... </when> <oth ...

  7. 磁盘“Seagate”没有被推出,因为一个或多个程序可能正在使用它。

    推出移动硬盘失败,解决方案: 执行 lsof /Volumes/Seagate/ 可以看到哪些进程在占用磁盘 $ lsof /Volumes/Seagate/ COMMAND PID USER FD ...

  8. Systemd Journald占用资源过多

    journald占用过多磁盘空间 方法一 检查当前journal使用磁盘量 journalctl --disk-usage 清理方法可以采用按照日期清理,或者按照允许保留的容量清理,只保存2天的日志, ...

  9. 手动编译部署LNMP环境(CentOS7.5+Nginx-1.18.0+MySQL-5.7.30+PHP-7.4.14)

    在平时运维工作中,经常需要用到LNMP应用框架.LNMP环境是指在Linux系统下,由Nginx + MySQL + PHP组成的网站服务器架构. 可参考前面的文章: 如何在CentOS 7上搭建LA ...

  10. openswan协商流程之(六):main_inI3_outR3()

    主模式第六包:main_inI3_outR3 1. 序言 main_inI3_outR3()函数是ISAKMP协商过程中第六包的核心处理函数的入口,第五六包主要用来验证对方的身份信息,同时此报文也是加 ...