正题

题目链接:https://www.luogu.com.cn/problem/P5048


题目大意



就是这个

【QA】区间众数,但空间很小

长度为\(n\)的序列,要求支持查找区间众数出现次数。

强制在线

\(1\leq n,m\leq 5\times 10^5\)


解题思路

空间小就不能用蒲公英那种做法了

分块然后处理出每个连续块段的众数,就是设\(f_{l,r}\)表示从块\(l\sim r\)的区间众数出现次数。

然后考虑散块的部分,如果散块会更新答案那么显然新的众数一定是出现在散块里的,所以答案增加不会超过\(2\sqrt n\)

用\(vector\)记录每个数字出现的位置,然后对于散块的每个数字我们看一下\(ans\)能否增加(就是往下到第\(ans+1\)个数字是否还在范围内就好了)

时间复杂度\(O(n\sqrt n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
const int N=5e5+10,M=710;
int n,m,cnt,pos[N],a[N],b[N],c[N],w[N],L[M],R[M],f[M][M];
vector<int>v[N];
int Ask(int l,int r){
int q=pos[l],p=pos[r];
if(q==p){
int ans=0;
for(int i=l;i<=r;i++)
++c[a[i]],ans=max(ans,c[a[i]]);
for(int i=l;i<=r;i++)c[a[i]]=0;
return ans;
}
int ans=f[q+1][p-1];
for(int i=l;i<=R[q];i++)
while(w[i]+ans<v[a[i]].size()&&v[a[i]][w[i]+ans]<=r)ans++;
for(int i=L[p];i<=r;i++)
while(w[i]-ans>=0&&v[a[i]][w[i]-ans]>=l)ans++;
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
int T=sqrt(n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),b[i]=a[i];
sort(b+1,b+1+n);
int mnt=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++){
a[i]=lower_bound(b+1,b+1+mnt,a[i])-b;
v[a[i]].push_back(i);
w[i]=v[a[i]].size()-1;
}
for(int i=1;i*T<=n;i++)
++cnt,L[cnt]=R[cnt-1]+1,R[cnt]=i*T;
if(R[cnt]<n)++cnt,L[cnt]=R[cnt-1]+1,R[cnt]=n;
for(int i=1;i<=cnt;i++)
for(int j=L[i];j<=R[i];j++)pos[j]=i;
for(int i=1;i<=cnt;i++){
for(int j=i;j<=cnt;j++){
f[i][j]=f[i][j-1];
for(int k=L[j];k<=R[j];k++)
++c[a[k]],f[i][j]=max(f[i][j],c[a[k]]);
}
for(int k=L[i];k<=n;k++)c[a[k]]=0;
}
int last=0;
while(m--){
int l,r;
scanf("%d%d",&l,&r);
l^=last;r^=last;
printf("%d\n",last=Ask(l,r));
}
return 0;
}

P5048-[Ynoi2019 模拟赛]Yuno loves sqrt technology III【分块】的更多相关文章

  1. Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...

  2. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  3. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  4. P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]

    为什么我感觉这题难度虚高啊-- 区间众数的出现次数- 计算器算一下 \(\sqrt 500000 = 708\) 然后我们发现这题的突破口? 考虑分块出来[L,R]块的众数出现个数 用 \(\text ...

  5. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  6. [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]

    题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...

  7. [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III

    题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...

  8. [Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...

  9. [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)

    二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...

  10. [Ynoi2019模拟赛]Yuno loves sqrt technology II

    题目大意: 给定一个长为\(n\)的序列,\(m\)次询问,每次查询一个区间的逆序对数. 32MB. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 二次离线莫队. 对于每个区 ...

随机推荐

  1. FirstGradle

    一.导入依赖 二.build.gradle 整合SpringBoot plugins { id 'java' } group 'com.qiang' version '1.0.0-SNAPSHOT' ...

  2. Nginx-出现-403-Forbidden

    步骤一: 检查目录权限.权限不足的就加个权限吧. 例子:chmod -R 755 / var/www 步骤二: 打开nginx.conf 例子:vim /etc/nginx/nginx.conf 把 ...

  3. nodejs 更改项目端口号的 方法

    我这里是 koa2 项目 1.项目目录 serverConf.js 这里面配置端口 代码如下: const ServerConf= { ServicePort: 3036 }; module.expo ...

  4. C#基础知识---Lambda表达式

    一.Lambda表达式简介 Lambda表达式可以理解为匿名函数,可以包含表达式和语句.它提供了一种便利的形式来创建委托. Lambda表达式使用这个运算符--- "=>", ...

  5. FastReport.net 绿色破解版winform中使用

    FastReport 是非常有名的报表库,曾经在delphi中经常看到 现在FastReport.net 是.net平台下的实现.它的价格对于个人开发者来说确实非常非常贵 出于学习的目的(0<& ...

  6. Git中使用.gitignore忽略文件的推送

    转载自:https://blog.csdn.net/lk142500/article/details/82869018 windows下可以用另存为生成gitignore 文件 1 简介 在使用Git ...

  7. JAVA虚拟机中的堆内存Heap与栈内存Stack

    原文链接:http://www.cnblogs.com/laoyangHJ/archive/2011/08/17/gc-Stack.html 深入Java虚拟机:JVM中的Stack和Heap 在JV ...

  8. tomcat配置启动不了

    关于ideatomcat配置问题 1.第一步配置tomcat启动器 2.配置启动的网址 3.配置启动器的启动 ---更多java学习,请见本人小博客:https://zhangjzm.gitee.io ...

  9. Java 学习:数据类型

    前言:Java属于强类型语言 强类型语言:要求变量的使用要严格符合规定,所有变量都必须先定义后才能使用 优势就是安全性高,但劣势速度慢 数据类型 Java的数据类型分为两大类: 基本类型(primit ...

  10. 为开源项目 go-gin-api 增加后台任务模块

    目录 任务管理界面 (WEB) 任务调度器 任务执行器 小结 推荐阅读 任务管理界面 (WEB) 支持在 WEB 界面 中对任务进行管理,例如:新增任务.编辑任务.启用/禁用任务.手动执行任务 等. ...