多变量线性回归

之前讨论的都是单变量的情况。例如房价与房屋面积之前的关系,但是实际上,房价除了房屋面积之外,还要房间数,楼层等因素相关。那么此时就变成了一个多变量线性回归的问题。在实际问题中,多变量的线性回归问题是更加常见的。

下面这个例子就是表明了我上面所说的情况。

之前的单变量线性回归的问题,最后求解得到的是一个线性方程。那么在多变量线性回归中,得到的是:

其中X,theta都是一个n阶向量。那么最后的表示方式就变为了:

h 是theta的转置与X的乘积。

多变量梯度下降

和单变量的线性回归方程一样,我们同样会存在一个多变量的线性回归方程。同时也存在一个对应的代价函数。下面就是一个多变量的代价函数。

代价函数的求法同样是根据梯度下降的方式来进行求解。

下面这张图的足有两个公式分别显示了不同的情况,左右是一个最基础的情况,只有两个参数。而右边就是常见的多变量的梯度下降的函数。

相信上面这两张图已经将区别和联系表现出来了。

梯度下降算法实践1——特征缩放

在多变量的梯度下降算法中,如果多个变量能够在同一个或者是相近的区间范围内,这样就很方便问题的求解。当然前提是知道多变量的实际的取值范围。

在房屋的例子中,假设我们是研究房价与房屋大小和房屋房间数量的关系。同时我们知道房屋大小和房间数量间的关系,如房屋大小是位于0-2000英寸,房间数量是1-5。那么我们最后得到的轮廓函数为:

但是如果我们将所有参数x1和x2都的取值都进行标准化,例如集中到[0,1]之间,那么最后轮廓函数变为:

标准化算法也有很多,最简单的方式是:

梯度下降算法实践2——学习率

梯度下降算法的特征缩放考虑的是将变量进行标准化,而学习率考虑的是学习率的大小问题。之前就讨论过,如果学习率过大,则可能无法收敛。如果学习率较小,则迭代次次数过大。

正常的情况下,一般是通过绘制迭代次数和代价函数的图表来观测合适收敛,如下:

也有一些自动测试是否收敛的方法,例如将代价函数的变化值与某个阀值(例如 0.001)

进行比较,但通常看上面这样的图表更好。

通过图表观察,需要注意的问题是,迭代的次数收到学习率a的影响。

一般情况,学习率的选择如下:

0.01,0.03,0.1,0.3,1,3,10

总结

本次的课程,还是比较简单易懂的,都是理论上面的问题,也无须编程实现。

为了能到远方,脚下的每一步都不能少

Andrew Ng机器学习算法入门((六):多变量线性回归方程求解的更多相关文章

  1. Andrew Ng机器学习算法入门(一):简介

    简介 最近在参加一个利用机器学习来解决安全问题的算法比赛,但是对机器学习的算法一直不了解,所以先了解一下机器学习相关的算法. Andrew Ng就是前段时间从百度离职的吴恩达.关于吴恩达是谁,相信程序 ...

  2. Andrew Ng机器学习算法入门(二):机器学习分类

    机器学习的定义 Arthur Samuel给出的定义,Field of Study that gives computers the ability to learn without being ex ...

  3. Andrew Ng机器学习算法入门(九):逻辑回归

    逻辑回归 先前所讲的线性回归主要是一个预测问题,根据已知的数据去预测接下来的情况.线性回归中的房价的例子就很好地说明了这个问题. 然后在现实世界中,很多问题不是预测问题而是一个分类问题. 如邮件是否为 ...

  4. Andrew Ng机器学习算法入门(八):正规方程

    正规方程 在先学习正规方程之前,先来复习一下之前学过的常规的回归方程的解法. 假设存在如果的代价函数, ,解法也十分的简答. 但是有时候遇到的情况或许会变得相当的复杂. 的数,如果是按照常规的方式进行 ...

  5. Andrew Ng机器学习算法入门(三):线性回归算法

    线性回归 线性回归,就是能够用一个直线较为精确地描述数据之间的关系.这样当出现新的数据的时候,就能够预测出一个简单的值. 线性回归中最常见的就是房价的问题.一直存在很多房屋面积和房价的数据,如下图所示 ...

  6. Andrew Ng机器学习算法入门(十):过拟合问题解决方法

    在使用机器学习对训练数据进行学习和分类的时候,会出现欠拟合和过拟合的问题.那么什么是欠拟合和过拟合问题呢?

  7. Andrew Ng机器学习算法入门((七):特征选择和多项式回归

    特征选择 还是回归到房价的问题.在最开始的问题中,我们假设房价与房屋面积有关,那么最开始对房价预测的时候,回归方程可能如下所示: 其中frontage表示的房子的长,depth表示的是房子的宽. 但长 ...

  8. Andrew Ng机器学习算法入门(四):阶梯下降算法

    梯度降级算法简介 之前如果需要求出最佳的线性回归模型,就需要求出代价函数的最小值.在上一篇文章中,求解的问题比较简单,只有一个简单的参数.梯度降级算法就可以用来求出代价函数最小值. 梯度降级算法的在维 ...

  9. Andrew Ng机器学习算法入门((五):矩阵和向量

    矩阵定义 数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列 使用Aij来获取矩阵中第i行j列的数据 向量的定义 向量就是n行1列的特殊矩阵 由于向量仅仅只有1行,那么通过一个变量i来指定获 ...

随机推荐

  1. mongodb 聚合(aggregate)

      MongoDB中文手册|官方文档中文版 https://docs.mongoing.com/ 聚合操作处理数据记录和 return 计算结果.聚合操作将来自多个文档的值组合在一起,并且可以对分组数 ...

  2. 数据库Redis(一)

    Redis数据库的特点: Redis数据库属于nosql数据库的一种,其存储于内存中(非硬盘),修改较为方便. 而Redis数据库的存储方式是使用{key:value}方式存储,类似python基础中 ...

  3. Cookie实现记住密码、自动登录

    前端代码 <form id="form" action="xxx" method="post"> <div> < ...

  4. 在swoole中制作一款仿制laravel的框架

    首先需要确定一下思路:我希望基于swoole的扩展开发的代码在run起来的时候,在接收到ws或是tcp等消息时,自动路由到某个类上,同时类可以实现加载类的依赖注入功能.目前市面上占据主流的一款框架La ...

  5. 痞子衡嵌入式:盘点国内MCU级RISC-V内核IP厂商

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是国内MCU级RISC-V内核IP厂商. 自RISC-V指令集2010年诞生以来,业界普遍认为,RISC-V将会改变现有的由Arm和Int ...

  6. HDU-6862 Hexagon (2020HDU 多校 D8 H)

    1008 题意:半径为n的六边形(由半径为1的小六边形组成),从某一个小六边形出发有六个方向,找到一条转向次数最多的路径(用方向表示)遍历所有的六边形(一个六边形只访问一次). 题解:先画出n=3/4 ...

  7. JSP实验报告

  8. C# .NET Socket 简单实用框架,socket组件封装

    参考资料 https://www.cnblogs.com/coldairarrow/p/7501645.html 根据.NET Socket 简单实用框架进行了改造,这个代码对socket通信封装还是 ...

  9. Elasticsearch扩展X-pack实施流程-实施

    Elasticsearch扩展X-PACK实施流程 elasticsearch5.2.1安装X-PACK,对ES集群进行监控,报警,安全验证,报告,图形化操作 注意 版本号需要固定,小版本都不能差,要 ...

  10. 使用 docker 进行 ElasticSearch + Kibana 集群搭建

    在Docker容器中运行Elasticsearch Kibana和Cerebro 机器信息 10.160.13.139 10.160.9.162 10.160.11.171 1. 安装docker和d ...