题意:

      一个人他有n个任务,每个任务都有一些限制:

 (1)只能在一个星期中指定的日子去做,比如周1 2 6啥的

 (2)总工作量有几天,就是一共要工作几天

 (3)必须在几周之内完成,就是你可以在能干活的日子里面选择那天去干活,但是不能超过规定的星期。

然后问,是否可以不冲突的干完所有的活?

思路:

      题目一般,没啥难度,做法也很多,说下最大流的做法吧,建图:

虚拟超级远点 s ,超级汇点t,拆点,把所有天数都拆开,就是第一周的星期1和第二周的星期一不是同一个点。

s连接所有任务 流量是天数

任务连接所有满足限制(2)(3)的已经拆开了的天  流量是INF

所有拆开的天数连接t,流量1.

然后一边最大流就行了,如果不想最大流可以把每个任务在拆成天数个点,就是比如任务一需要3天完成,那么就把他拆成三个一天的任务,然后建图差不多,一遍二分匹配就行了,时间复杂度肯定允许,如果只是为了AC还有很多别的方法,题目不难,就说这么多吧。

#include<queue>

#include<stdio.h>

#include<string.h>

#define N_node 20 + 350 + 1 + 5

#define N_edge (20 * 350 + 20 + 350) * 2 + 100

#define INF 1000000000

using namespace std;

typedef struct

{

    int x ,t;

}DEP;

typedef struct

{

    int to ,cost ,next;

}STAR;

DEP xin ,tou;

STAR E[N_edge];

int list[N_node] ,listt[N_node] ,tot;

int deep[N_node];

void add(int a ,int b ,int c)

{

    E[++tot].to = b;

    E[tot].cost = c;

    E[tot].next = list[a];

    list[a] = tot;

    E[++tot].to = a;

    E[tot].cost = 0;

    E[tot].next = list[b];

    list[b] = tot;

}

int minn(int x ,int y)

{

    return x <y ? x : y;

}

bool BFS_Deep(int s ,int t ,int n)

{

    memset(deep ,255 ,sizeof(deep));

    deep[s] = 0;

    xin.x = s ,xin.t = 0;

    queue<DEP>q;

    q.push(xin);

    while(!q.empty())

    {

        tou = q.front();

        q.pop();

        for(int k = list[tou.x] ;k ;k = E[k].next)

        {

            xin.x = E[k].to;

            xin.t = tou.t + 1;

            if(deep[xin.x] != -1 || !E[k].cost)

            continue;

            deep[xin.x] = xin.t;

            q.push(xin);

        }

    }

    for(int i = 0 ;i <= n ;i ++)

    listt[i] = list[i];

    return deep[t] != -1;

}

int DFS_Flow(int s ,int t ,int flow)

{

    if(s == t) return flow;

    int nowflow = 0;

    for(int k = listt[s] ;k ; k = E[k].next)

    {

        listt[s] = k;

        int to = E[k].to;

        int c = E[k].cost;

        if(deep[to] != deep[s] + 1 || !c)

        continue;

        int tmp = DFS_Flow(to ,t ,minn(c ,flow - nowflow));

        nowflow += tmp;

        E[k].cost -= tmp;

        E[k^1].cost += tmp;

        if(nowflow == flow) break;

    }

    if(!nowflow) deep[s] = 0;

    return nowflow;

}

int DINIC(int s ,int t ,int n)

{

    int Ans = 0;

    while(BFS_Deep(s ,t ,n))

    {

        Ans += DFS_Flow(s ,t ,INF);

    }

    return Ans;

}

int main ()

{

    int t ,n ,i ,j ,maxk ,s;

    int tmp[10];

    scanf("%d" ,&t);

    while(t--)

    {

        scanf("%d" ,&n);

        memset(list ,0 ,sizeof(list));

        tot = 1 ,maxk = 0 ,s = 0;

        for(i = 1 ;i <= n ;i ++)

        {

            for(j = 1 ;j <= 9 ;j ++)

            scanf("%d" ,&tmp[j]);

            if(maxk < tmp[9]) maxk = tmp[9];

            s += tmp[8];

            add(0 ,i ,tmp[8]);

            for(j = 1 ;j <= 7 ;j ++)

            if(tmp[j])

            {

                for(int k = 1 ;k <= tmp[9] ;k ++)

                add(i ,j + (k-1) * 7 + n ,INF);

            }

        }

        for(i = 1 ;i <= 7 ;i ++)

        for(j = 1 ;j <= maxk ;j ++)

        add((j - 1) * 7 + i + n, maxk * 7 + n + 1 ,1);

        int Flow =  DINIC(0 ,maxk * 7 + n + 1 ,maxk * 7 + n + 1);

        Flow == s ? puts("Yes") : puts("No");

    }

    return 0;

}

POJ1698 最大流或者匈牙利的更多相关文章

  1. 二分图最大匹配模板【匈牙利;Dinic最大流】

    二分图最大匹配模板[匈牙利:Dinic最大流] 匈牙利算法 int n,m; vector<int> map[100010]; int match[100010];//保存匹配的互相点 b ...

  2. 【海岛帝国系列赛】No.7 海岛帝国:神圣之日

    50237242海岛帝国:神圣之日 [试题描述] 战争持续九个月了.“购物券”WHT的军队还在跟恐怖分子僵持着.WHT和LJX已经向“公务员”告急,情况不宜乐观.YSF为守护帝国决定打开“够累 的”星 ...

  3. Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)

    解题报告 二分图第一题. 题目描写叙述: 为了參加即将召开的会议,A国派出M位代表,B国派出N位代表,(N,M<=1000) 会议召开前,选出K队代表,每对代表必须一个是A国的,一个是B国的; ...

  4. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  5. bzoj1854: [Scoi2010]游戏(匈牙利) / GDKOI Day2 T2(最大流)

    题目大意:有n(<=1000000)个装备,每个装备有两个属性值(<=10000),每个装备只能用一次,使用某一个值,攻击boss必须先使用属性为1的,再使用属性为2的,再使用属性为3的, ...

  6. P3386 【模板】二分图匹配(匈牙利&最大流)

    P3386 [模板]二分图匹配 题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正 ...

  7. NOIP 模拟 box - 费用流 / 匈牙利

    题目大意: 给出n(\(\le 200\))个盒子,第i个盒子长\(x_i\),宽\(y_i\),一个盒子可以放入长宽都大于等于它的盒子里,并且每个盒子里只能放入一个盒子(可以嵌套),嵌套的盒子的占地 ...

  8. BZOJ3291Alice与能源计划——匈牙利算法+模拟费用流

    题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验.为 了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...

  9. BZOJ2557[Poi2011]Programming Contest——匈牙利算法+模拟费用流

    题目描述 Bartie and his friends compete in the Team Programming Contest. There are n contestants on each ...

随机推荐

  1. 欢迎参加3月活动:AWS 在线研讨会与阿里云 RISC-V 应用创新大赛

    3月份我们在帮合作云厂商 Amazon Web Services(AWS) 与阿里云推广2个活动,欢迎感兴趣的园友参加. 活动一:亚马逊云科技在线研讨会:借助 DGL 实现实时欺诈检测 博客园专属报名 ...

  2. The 2018 ACM-ICPC CCPC NING XIA G-Factories

    题意:在一棵数的叶子上建k个工厂保证,求两两距离之和的最小值. 思路:如果一个一个叶子节点去考虑去与否太麻烦了,直接考虑该节点的子树上选取几个作为工厂,利用树形DP,dp[u][i]表示的是u节点为根 ...

  3. SpringBoot Shiro 权限注解不起作用

    最近在学习springboot结合shiro做权限管理时碰到一个问题. 问题如下: 我在userRealm中的doGetAuthorizationInfo方法中给用户添加了权限,然后在Controll ...

  4. 【牛客网】数据库SQL实战(题解)

    1.查找最晚入职员工的所有信息 [题解] hire_date可能存在重复值,所以需要找到hire_date的最大值,然后再筛选,才能hire_date最晚的记录都筛选出来. [代码] 1 SELECT ...

  5. MVC中"删除"按钮无法实现

    出现原因:MVC视图中定义了空的模板页 解决办法:删除模板页 或 改成定义页面标题都可以

  6. 14、MyBatis教程之全部(包括所有章节)

    MyBatis 3.5.5 教程 1.环境准备 jdk 8 + MySQL 5.7.19 maven-3.6.1 IDEA 学习前需要掌握: JDBC MySQL Java 基础 Maven Juni ...

  7. Software

    Software is a bridge, acorss people, the links, and knowledge. 并非单一的产品,而是整个行业.

  8. 分享15个实用VSCode插件,快来收藏吧!

    Visual Studio Code 是由微软开发的一款免费.跨平台的文本编辑器.它有卓越的性能和丰富的功能.VSCode 也有一个扩展和主题市场,为了帮助大家挑选出值得下载的插件,我们针对性的收集了 ...

  9. 这可能是最容易理解的 Go Mutex 源码剖析

    Hi,大家好,我是 haohongfan. 上一篇文章<一文完全掌握 Go math/rand>,我们知道 math/rand 的 global rand 有一个全局锁,我的文章里面有一句 ...

  10. linux下Mysql 8.0.19 编译安装

    1 前言 linux下安装MySQL的方式有很多种,包括以仓库的方式安装(yum,apt,zypper),以包的方式安装(rpm,deb),以docker方式安装,从压缩包解压安装,从源码编译安装,这 ...