其中其决定作用的是这篇文章  https://www.pugetsystems.com/labs/hpc/Install-TensorFlow-with-GPU-Support-the-Easy-Way-on-Ubuntu-18-04-without-installing-CUDA-1170/

注意兼容版本:https://devtalk.nvidia.com/default/topic/1047898/cuda-setup-and-installation/cuda-10-1-tensorflow-1-13/2

1-安装显卡驱动

在终端执行如下命令,建议先切换到国内源,如huaweicloud mirrors。

sudo apt purge nvidia*
ubuntu-drivers devices # 可以看到显卡等设备,和推荐的驱动
sudo ubuntu-drivers autoinstall # 安装推荐驱动,通常是最新版

如果通过ubuntu-drivers devices看不到NVidia显卡,则添加

sudo add-apt-repository ppa:graphics-drivers
sudo apt-get update

安装完后,重启系统, 启动后,在图形界面运行Nvidia X Server Settings,可以看到显卡情况,如下图。

2-安装Anaconda+Tensorflow-GPU

安装 Anaconda

bash Anaconda3-5.3.0-Linux-x86_64.sh # make sure append the Anaconda executable directory to your PATH environment variable in .bashrc
source ~/.bashrc
python --version # to show the python version

装之前,推荐切换到国内源:

anaconda的源改为国内镜像, 配置文件是~/.condarc

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes

pip源改为国内镜像, 配置文件是~/.pip/pip.conf, 该后的文件内容如下:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
[install]
trusted-host=https://pypi.tuna.tsinghua.edu.cn

update conda

conda update conda -y
conda update anaconda -y
conda update python -y
conda update --all -y

安装tensorflow

conda create --name tf-gpu   # Create a Python "virtual environment" for TensorFlow using conda
conda activate tf-gpu       # 注意运行此命令后,命令行开头的提示变为(tf-gpu) user@computer:~$,表示tf-gpu环境处于激活状态
# 后面的命令,都在tf-gpu环境下执行,我保留了命令行的提示,以示区别

(tf-gpu) user@computer:~$ conda install tensorflow-gpu -y # install TensorFlow with GPU acceleration and all of the dependencies.

为Tensorflow环境创建Jupyter Notebook Kernel

(tf-gpu) user@computer:~$ conda install ipykernel -y
(tf-gpu) user@computer:~$ conda install jupyter
(tf-gpu) user@computer:~$ python -m ipykernel install --user --name tf-gpu --display-name "TensorFlow-GPU"

安装keras

(tf-gpu) user@computer:~$ conda install keras -y

3-测试安装结果

用Keras 例程(Keras内部会用到Tensorflow)

打开Jupyter Notebook

jupyter notebook

创建新笔记: New下拉菜单 -> 选择TensorFlow-GPU

输入如下测试代码,并运行:

# Import dependencies
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Flatten, MaxPooling2D, Conv2D
from keras.callbacks import TensorBoard # Load and process the MNIST data
# 推荐先下载mnist.npz到目录~/.keras/datasets/
(X_train,y_train), (X_test, y_test) = mnist.load_data(path="mnist.npz")
X_train = X_train.reshape(60000,28,28,1).astype('float32')
X_test = X_test.reshape(10000,28,28,1).astype('float32')
X_train /= 255
X_test /= 255
n_classes = 10
y_train = keras.utils.to_categorical(y_train, n_classes)
y_test = keras.utils.to_categorical(y_test, n_classes) # Create the LeNet-5 neural network architecture
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)) )
model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax')) # Compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Set log data to feed to TensorBoard for visual analysis
tensor_board = TensorBoard('./logs/LeNet-MNIST-1') # Train the model
model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=1,
validation_data=(X_test,y_test), callbacks=[tensor_board])

运行完后查看误差曲线

 (tf-gpu) dbk@i9:~$ tensorboard --logdir=./logs --port 6006

效果如下图

Ubuntu18.04 + NVidia显卡 + Anaconda3 + Tensorflow-GPU 安装、配置、测试 (无需手动安装CUDA)的更多相关文章

  1. Ubuntu18.04 NVIDIA显卡驱动 安装大全

    离线安装NVIDIA显卡驱动 费了一天的劲,走了好多的坑,最主要的原因是gcc版本的问题,一定要用最新版本的gcc!!! 1)官网下载显卡驱动 2)apt 下载gcc包及其依赖包,可用apt-cach ...

  2. Ubuntu16.04 Nvidia显卡驱动简明安装指南

    简单得整理了一下Ubuntu16.04 Nvidia显卡驱动的安装步骤: 查看当前系统显卡参数: sudo lspci | grep -i nvidia 删除之前的驱动: sudo apt-get - ...

  3. Hadoop2.2集群安装配置-Spark集群安装部署

    配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(19 ...

  4. 从subversion开始(svn安装配置全过程(+全套安装文件与配置文件))…..

    从subversion开始(svn安装配置全过程(+全套安装文件与配置文件))-.. 博客分类: 工具使用 SVNsubversion配置管理Apache应用服务器  </div> 花了一 ...

  5. MySQL 5.7.33 超级详细下载安装配置测试教程(可以安装成功版)

    目录 1.引言及注意事项 (1) 引言: (2) 注意: 2.MySQL下载 3.配置环境变量 4.配置my.ini文件(重点) 5.安装MySQL(重点) 6.设置密码 7.测试MySQL是否安装成 ...

  6. (解决某些疑难杂症)Ubuntu16.04 + NVIDIA显卡驱动 + cuda10 + cudnn 安装教程

    一.NVIDIA显卡驱动 打开终端,输入: sudo nautilus 在新打开的文件夹中,进入以下路径(不要用命令行): 左下角点计算机,lib,modules 这时会有几个文件夹,对每个文件夹都进 ...

  7. Ubuntu 14.04 Nvidia显卡驱动手动安装及设置

      更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用 ...

  8. Ubuntu 14.04 Nvidia显卡驱动安装及设置

    更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用集显 ...

  9. nginx安装配置+清缓存模块安装

    经过一段时间的使用,发现nginx在并发与负载能力方面确实优于apache,现在已经将大部分站点从apache转到了nginx了.以下是nginx的一些简单的安装配置. 环境 操作系统:CentOS. ...

随机推荐

  1. 利用LRU策略实现Axios请求缓存

    业务场景 前一段时间刚做完一个项目,先说一下业务场景,有别于其他的前端项目,这次的项目是直接调用第三方服务的接口,而我们的服务端只做鉴权和透传,第三方为了灵活,把接口拆的很零散,所以这个项目就像扔给你 ...

  2. dragover event 翻译

    当选择的元素或文本被拖拽到一个有效的放置目标上时(每几百毫秒),dragover事件就会被触发. 该事件在放置目标上被触发. Property Type Description target Read ...

  3. jquery设置下拉框selected不起作用

    在js中设置下拉框被选中: 最初写法: //移出selected $("#selected option").removeAttr("selected"); / ...

  4. joomla 3.7.0 (CVE-2017-8917) SQL注入漏洞

    影响版本: 3.7.0 poc http://192.168.49.2:8080/index.php?option=com_fields&view=fields&layout=moda ...

  5. 大数据学习(25)—— 用IDEA搭建Spark开发环境

    IDEA是一个优秀的Java IDE工具,它同样支持其他语言.Spark是用Scala语言编写的,用Scala开发Spark是最舒畅的.当然,Spark也提供Java和Python的API. Java ...

  6. 【Azure 应用服务】App Service 运行状况健康检查功能简介 (Health check)

    通过Azure App Service门户,启用Health Check来监视应用服务的实例,当发现其中一个实例处于不健康(unhealthy)状态时,通过重新路由(即把有问题的实例从负载均衡器中移除 ...

  7. 关于Asp.Net MVC html.renderaction传递参数

    View视图 @{html.renderaction("控制器方法名","控制器名称",new{params1="参数值"})} Contr ...

  8. 题解 P6688 可重集

    己所欲者,杀而夺之,亦同天赐 解题思路 一定不要用自动溢出的 Hash!!!!!!! 我真的是调吐了... 思路非常简单明了 : 需要我们创新一下 Hash. 首先我们的 Hash 要满足无序性.. ...

  9. Python实现猜数字游戏

    Python中实现猜数字游戏代码如下: import random # 引入随机数标准库-random # 定义数字上下限和最大游戏次数 min_num = 1 max_num = 10 guess_ ...

  10. Linux 内核的代码仓库太不一样了,光克隆都让我挠头,克隆后居然还丢文件,你肯定也会遇到!!!

    一个肯定能让你节省几个小时的小知识 大家好,我是 小猿来也,一个人称撸(划)码(水)小能手的程序猿. 最近一段时间,每次经过旁边大佬工位,总是发现他在快速的切屏,不知道在搞什么?难道他发现了快乐星球? ...