Cornfields
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6798   Accepted: 3315

Description

FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find.


FJ has, at great expense, surveyed his square farm of N x N hectares
(1 <= N <= 250). Each hectare has an integer elevation (0 <=
elevation <= 250) associated with it.



FJ will present your program with the elevations and a set of K (1
<= K <= 100,000) queries of the form "in this B x B submatrix,
what is the maximum and minimum elevation?". The integer B (1 <= B
<= N) is the size of one edge of the square cornfield and is a
constant for every inquiry. Help FJ find the best place to put his
cornfield.

Input

* Line 1: Three space-separated integers: N, B, and K.



* Lines 2..N+1: Each line contains N space-separated integers. Line
2 represents row 1; line 3 represents row 2, etc. The first integer on
each line represents column 1; the second integer represents column 2;
etc.



* Lines N+2..N+K+1: Each line contains two space-separated integers
representing a query. The first integer is the top row of the query; the
second integer is the left column of the query. The integers are in the
range 1..N-B+1.

Output

* Lines 1..K: A single integer per line representing the difference between the max and the min in each query.

Sample Input

5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2

Sample Output

5
思路:单调栈;
因为正方形的大小是固定的,然后我们先每列每个元素用单调队列维护最大最小值,然后在用维护的矩阵,在每行每个元素维护最大最小值
这样ama[i][j]就是以(i-b+1,j-b+1)为左上角,所有元素的最大值;同理ami[i][j]为最小。复杂度O(n*n);
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<deque>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 int ma[300][300];
12 int maxx[300][300];
13 int minn[300][300];
14 int que[300*2];
15 int ama[300][300];
16 int ami[300][300];
17 void get_maxx(int n,int k);
18 void get_minn(int n,int k);
19 int main(void)
20 {
21 int n,b,k;
22 int i,j;
23 while(scanf("%d %d %d",&n,&b,&k)!=EOF)
24 {
25 for(i = 1; i <= n; i++)
26 {
27 for(j = 1; j <= n; j++)
28 {
29 scanf("%d",&ma[i][j]);
30 }
31 }
32 get_minn(n,b);
33 get_maxx(n,b);
34 while(k--)
35 {
36 int x;
37 int y;
38 scanf("%d %d",&x,&y);
39 x+=b-1;
40 y+=b-1;
41 printf("%d\n",ama[x][y]-ami[x][y]);
42 }
43 }
44 return 0;
45 }
46 void get_maxx(int n,int k)
47 {
48 int i,j;
49 for(j = 1; j <= n; j++)
50 {
51 int head = 1;
52 int rail = 0;
53 for(i = 1; i <= n; i++)
54 {
55 if(head > rail)
56 {
57 que[++rail] = i;
58 }
59 else
60 {
61 int id = que[rail];
62 while(ma[id][j] <= ma[i][j])
63 {
64 rail--;
65 if(rail < head)
66 break;
67 id = que[rail];
68 }
69 que[++rail] = i;
70 }
71 int ic = que[head];
72 while(ic < max(0,i-k)+1)
73 {
74 head++;
75 ic = que[head];
76 }
77 maxx[i][j] = ma[que[head]][j];
78 }
79 }
80 for(i = 1; i <= n; i++)
81 {
82 int head = 1;
83 int rail = 0;
84 for(j = 1; j <= n; j++)
85 {
86 if(head > rail)
87 {
88 que[++rail] = j;
89 }
90 else
91 {
92 int id = que[rail];
93 while(maxx[i][id] <= maxx[i][j])
94 {
95 rail--;
96 if(rail < head)
97 break;
98 id = que[rail];
99 }
100 que[++rail] = j;
101 }
102 int ic = que[head];
103 while(ic < max(0,j-k)+1)
104 {
105 head++;
106 ic = que[head];
107 }
108 ama[i][j] = maxx[i][que[head]];
109 }
110 }
111 }
112 void get_minn(int n,int k)
113 {
114 int i,j;
115 for(j = 1; j <= n; j++)
116 {
117 int head = 1;
118 int rail = 0;
119 for(i = 1; i <= n; i++)
120 {
121 if(head > rail)
122 {
123 que[++rail] = i;
124 }
125 else
126 {
127 int id = que[rail];
128 while(ma[id][j] >= ma[i][j])
129 {
130 rail--;
131 if(rail < head)
132 break;
133 id = que[rail];
134 }
135 que[++rail] = i;
136 }
137 int ic = que[head];
138 while(ic < max(0,i-k)+1)
139 {
140 head++;
141 ic = que[head];
142 }
143 minn[i][j] = ma[que[head]][j];
144 }
145 }
146 for(i = 1; i <= n; i++)
147 {
148 int head = 1;
149 int rail = 0;
150 for(j = 1; j <= n; j++)
151 {
152 if(head > rail)
153 {
154 que[++rail] = j;
155 }
156 else
157 {
158 int id = que[rail];
159 while(minn[i][id] >= minn[i][j])
160 {
161 rail--;
162 if(rail < head)
163 break;
164 id = que[rail];
165 }
166 que[++rail] = j;
167 }
168 int ic = que[head];
169 while(ic < max(0,j-k)+1)
170 {
171 head++;
172 ic = que[head];
173 }
174 ami[i][j] = minn[i][que[head]];
175 }
176 }
177 }

Cornfields(poj2019)的更多相关文章

  1. Cornfields poj2019 二维RMQ

    Cornfields Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit S ...

  2. [poj2019]Cornfields(二维RMQ)

    题意:给你一个n*n的矩阵,让你从中圈定一个小矩阵,其大小为b*b,有q个询问,每次询问告诉你小矩阵的左上角,求小矩阵内的最大值和最小值的差. 解题关键:二维st表模板题. 预处理复杂度:$O({n^ ...

  3. [POJ 2019] Cornfields

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5516   Accepted: 2714 Descri ...

  4. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  5. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  6. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  7. POJ 2019 Cornfields(二维RMQ)

    相比以前的RMQ不同的是,这是一个二维的ST算法 #include<iostream> #include<cstring> #include<cstdio> #in ...

  8. poj2019 二维RMQ模板题

    和hdu2888基本上一样的,也是求一个矩阵内的极值 #include<iostream> #include<cstring> #include<cstdio> # ...

  9. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

随机推荐

  1. php导出pdf,dompdf中文字体乱码解决办法(特别是代码迁移引起的乱码)

    dompdf\lib\fonts\dompdf_font_family_cache.php记住这个文件里面存放的是字体生成的缓存,迁移时如果覆盖了这个文件会导致乱码而且很难找到出错的地方,相信我... ...

  2. Apache RocketMQ分布式消息传递和流数据平台及大厂面试宝典v4.9.2

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Apache RocketMQ官网地址 https://rocketmq.apache.org/ Latest rel ...

  3. 用前端表格技术构建医疗SaaS 解决方案

    电子健康档案(Electronic Health Records, EHR)是将患者在所有医疗机构产生的数据(病历.心电图.医疗影像等)以电子化的方式存储,通过在不同的医疗机构之间共享,让患者面对不同 ...

  4. accustom

    近/反义词: acclimatize, familiarize, habituate, inure, get used to, orient; alienate, estrange, wean New ...

  5. COAP协议 - arduino ESP32 M2M(端对端)通讯与代码详解

    前言 最近我在研究 COAP 协议,在尝试使用 COAP 协议找了到了一个能在ESP32上用的coap-simple库,虽然库并不完善关于loop处理的部分应该是没写完,但是对于第一次接触COAP的朋 ...

  6. 20. VIM命令操作技巧

    V可视化选中当前行,根据光标可多行 ctrl+v 可视化块 v可视化根据光标 行间移动 快速增删改查 d 0 删除当前位置到行首 d $ 删除当前位置到行尾 d  t  (" ] ) )符号 ...

  7. Oracle中如何自定义类型

    一:Oracle中的类型有很多种,主要可以分为以下几类:1.字符串类型.如:char.nchar.varchar2.nvarchar2.2.数值类型.如:int.number(p,s).integer ...

  8. Linux:awk与cut命令的区别

    结论:awk 以空格为分割域时,是以单个或多个连续的空格为分隔符的;cut则是以单个空格作为分隔符.

  9. VUE页面实现加载外部HTML方法

    前后端分离,后端提供了接口.但有一部分数据,比较产品说明文件,是存在其他的服务器上的.所以,在页面显示的时候,如果以页面内嵌的形式显示这个说明文件.需要搞点事情以达到想要的效果.本文主要和大家介绍VU ...

  10. Activiti工作流引擎使用详解(一)

    一.IDEA安装activiti插件 在插件库中查找actiBPM,安装该插件,如果找不到该插件,请到插件库中下载该包手动安装,插件地址 http://plugins.jetbrains.com/pl ...