noip10
T1
直接暴力可拿60pts,不开 long long 会挂5pts,时间复杂度
\(\mathcal O(n^{4})\) , 然而这过不了400的数据,至少也要 \(\mathcal O(n^{3})\),然后,考试的时候就想不出来了。
正解,枚举行,计算出模 \(k\) 意义下余数相同的矩阵的个数,统计答案即可。
Code
#include<cstdio>
#define MAX 1000001
#define re register
#define int long long
namespace OMA
{
int n,m,p,ans;
int sum[401][401];
int cnt[MAX],pre[401];
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
signed main()
{
n = read(),m = read(),p = read();
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=m; j++)
{ (sum[i][j] += sum[i-1][j]+sum[i][j-1]+read()-sum[i-1][j-1]+p) %= p; }
}
for(re int i=0; i<=n-1; i++)
{
for(re int j=i+1; j<=n; j++)
{
cnt[0] = 1;
for(re int k=1; k<=m; k++)
{ ans += cnt[(pre[k] = sum[j][k]-sum[i][k]+p) %= p]++; }
for(re int k=1; k<=m; k++)
{ cnt[pre[k]] = 0; }
}
}
printf("%lld\n",ans);
return 0;
}
}
signed main()
{ return OMA::main(); }
T2
\(k=0\) 时,直接输出 \(n\) ,5pts。
\(k=1\) 时。直接树形dp,类似于小胖守皇宫,40pts。
正解:
- 可以用树形dp过,但不好搞,不过大帝做到了。
- 贪心,我们设 \(dp_{u,0}\) 表示 \(u\) 到最近被控制点的距离, \(dp_{u,1}\) 表示 \(u\) 到最远没被控制点的距离。
初始化,\(dp_{u,0}=\infty,dp_{u,1}=0\),
当 \(dp_{u,0}+dp_{u,1}<=k\) 时,说明该节点能被控制,不会对答案有贡献。 \(dp_{u,1}=-1\)
当 \(dp_{u,1}=k\) 时,此时该点必须被控制,这时已经达到能控制点的的最远距离,如果再向上的话,则无法控制 \(u\)。 \(dp_{u,0}=0,dp_{u,1}=-1\)
记得特判一下根节点能否被控制。 - 还有种 \(\mathcal O(n)\) 做法
Code
#include<cstdio>
#define MAX 100001
#define re register
namespace OMA
{
int n,k,t;
struct Graph
{
int next;
int to;
}edge[MAX<<1];
int cnt=1,head[MAX];
int dp[MAX][2],ans;
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
inline void add(int u,int v)
{
edge[++cnt].next = head[u];
edge[cnt].to = v;
head[u] = cnt;
}
inline int min(int a,int b)
{ return a<b?a:b; }
inline int max(int a,int b)
{ return a>b?a:b; }
inline void dfs(int u,int fa)
{
dp[u][0] = 0x3f,dp[u][1] = 0;
for(re int i=head[u]; i; i=edge[i].next)
{
int v = edge[i].to;
if(v!=fa)
{
dfs(v,u);
if(~dp[v][1])
{ dp[u][1] = max(dp[u][1],dp[v][1]+1); }
dp[u][0] = min(dp[u][0],dp[v][0]+1);
}
}
if(dp[u][1]==k)
{ ans++,dp[u][0] = 0,dp[u][1] = -1; }
if(dp[u][0]+dp[u][1]<=k)
{ dp[u][1] = -1; }
}
signed main()
{
n = read(),k = read(),t = read();
for(re int i=1; i<=n-1; i++)
{
int u = read(),v = read();
add(u,v),add(v,u);
}
dfs(1,0);
if(~dp[1][1])
{ ans++; }
printf("%d\n",ans);
return 0;
}
}
signed main()
{ return OMA::main(); }
T3
考试的时候想了状压 \(k\) ,但是不会看到范围才想的状压
直接输出1,4pts。
对于 \(n\le16\) ,直接状压,24pts。
对于 \(m=1\) ,的情况,直接从前往后扫,遇见没亮的就点,28pts。
玄学 \(rand()\) ,可骗0~12pts不等 TLEer拿阳寿换的12pts
正解:
神仙转换。
先咕了QAQ
Code
#include<queue>
#include<cstdio>
#define MAX 40001
#define re register
namespace OMA
{
int n,k,m,cnt;
std::queue<int>q;
int vis[MAX],dis1[MAX];
int a[MAX],b[70],p[MAX];
int dis[20][20],top,dp[1<<17];
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
inline int min(int a,int b)
{ return a<b?a:b; }
inline void bfs(int u)
{
for(re int i=0; i<=n; i++)
{ dis1[i] = vis[i] = 0; }
q.push(u);
vis[u] = true;
while(!q.empty())
{
int k = q.front(); q.pop();
for(re int i=1; i<=m; i++)
{
int v[2] = {k-b[i],k+b[i]};
if(v[0]>=0&&!vis[v[0]])
{ q.push(v[0]),dis1[v[0]] = dis1[k]+(vis[v[0]] = 1); }
if(v[1]<=n&&!vis[v[1]])
{ q.push(v[1]),dis1[v[1]] = dis1[k]+(vis[v[1]] = 1); }
}
}
}
signed main()
{
n = read(),k = read(),m = read();
for(re int i=1; i<=k; i++)
{ a[read()] = 1; }
for(re int i=1; i<=m; i++)
{ b[i] = read(); }
for(re int i=0; i<=n; i++)
{
if(a[i]^a[i+1])
{ p[++cnt] = i; }
}
for(re int i=1; i<=cnt; i++)
{
bfs(p[i]);
for(re int j=1; j<=cnt; j++)
{ dis[i][j] = dis1[p[j]]; }
}
top = (1<<cnt)-1;
for(re int i=1; i<=top; i++)
{ dp[i] = 0x3f3f3f3f; }
for(re int i=0; i<=top; i++)
{
int k = 0;
while(i&(1<<k))
{ k++; }
for(re int j=k+1; j<=cnt-1; j++)
{
if(!(i&(1<<j))&&dis[j+1][k+1])
{ dp[i|(1<<j)|(1<<k)] = min(dp[i|(1<<j)|(1<<k)],dp[i]+dis[j+1][k+1]); }
}
}
printf("%d\n",dp[top]);
return 0;
}
}
signed main()
{ return OMA::main(); }
noip10的更多相关文章
- [NOIP10.6模拟赛]1.merchant题解--思维+二分
题目链接: while(1)gugu(while(1)) 闲扯 考场上怕T2正解写挂其他两题没管只打了暴力,晚上发现这题思维挺妙的 同时想吐槽出题人似乎热衷卡常...我的巨大常数现在显露无疑QAQ 分 ...
- [NOIP10.6模拟赛]2.equation题解--DFS序+线段树
题目链接: 咕 闲扯: 终于在集训中敲出正解(虽然与正解不完全相同),开心QAQ 首先比较巧,这题是\(Ebola\)出的一场模拟赛的一道题的树上强化版,当时还口胡出了那题的题解 然而考场上只得了86 ...
- [NOIP10.5模拟赛]1.a题解--离散化+异或线段树
题目链接: 咕咕咕 https://www.luogu.org/problemnew/show/CF817F 闲扯 在Yali经历几天折磨后信心摧残,T1数据结构裸题考场上连暴力都TM没打满 分析 观 ...
- [NOIP10.5模拟赛]3.c题解--思维
题目链接 这次不咕了 https://www.luogu.org/problemnew/show/AT2389 闲扯 考场20分爆搜走人 \cy 话说这几天T3都很考验思维啊 分析 我们先钦定一只鸡( ...
- [NOIP10.3模拟赛]3.w题解--神奇树形DP
题目链接: 咕 闲扯: 这题考场上把子任务都敲满了,5个namespace,400行11k 结果爆0了哈哈,因为写了个假快读只能读入一位数,所以手测数据都过了,交上去全TLE了 把边分成三类:0. 需 ...
- [NOIP10.4模拟赛]3.z题解--思维
题目链接: 咕咕 闲扯: 哈哈这道T3考场上又敲了5个namespace,300+行,有了前车之鉴还对拍过,本以为子任务分稳了 结果只有30分哈哈,明明用极限数据对拍过不知怎么回事最后数据又是读不全, ...
- [NOIP10.4模拟赛]2.y题解--折半搜索+状压计数
题目链接: 咕 闲扯: 这题暴力分似乎挺多,但是一些奇奇怪怪的细节没注意RE了,还是太菜了 分析: 首先我们考虑最naiive的状压DP ,\(f[u][v][state]\)表示u开头,v结尾是否存 ...
随机推荐
- C# 8.0和.NET Core 3.0高级编程 分享笔记一:C#8.0与NET Core 3.0入门
在学习C#相关知识的过程中,我们使用Visual Studio Code来入门整个C#. 一.安装Visual Studio Core环境 通过https://code.visualstudio.co ...
- mac-webui-selenium下的webdriver selenium.common.exceptions.WebDriverException: Message: 'chromedriver' executable needs to be in PATH
from selenium import webdriver def test1(): url='http://www.baidu.com' driver=webdriver.Chrome(" ...
- CF277E Binary Tree on Plane
CF277E Binary Tree on Plane 题目大意 给定平面上的 \(n\) 个点,定义两个点之间的距离为两点欧几里得距离,求最小二叉生成树. 题解 妙啊. 难点在于二叉的限制. 注意到 ...
- PYTHON startswith (endswith类似)
Python startswith()方法Python startswith() 方法用于检查字符串是否是以指定子字符串开头,如果是则返回 True,否则返回 False.如果参数 beg 和 end ...
- SQL2008 合并多个结构相同的表的所有数据到新的表
select * into tikua from (select * from tiku20210303 union all select * from tiku) a
- 00JAVA语法基础_六位验证码 01
在网上看了许多的源程序,涉及到的东西也不太一样,多了图形处理的,由于还没理解太明白,只是做了控制台. package Six_Code; import java.util.Random; import ...
- [010] - JavaSE面试题(十):集合之Map
第一期:Java面试 - 100题,梳理各大网站优秀面试题.大家可以跟着我一起来刷刷Java理论知识 [010] - JavaSE面试题(十):集合之Map 第1问:HashMap和HashTable ...
- C语言中函数的返回值
规则 除局部变量的内存地址不能作为函数的返回值外,其他类型的局部变量都能作为函数的返回值. 我总结出下面这些规则: int.char等数据类型的局部变量可以作为函数返回值. 在函数中声明的指针可以作为 ...
- facade层,service 层,domain层,dao 层设计
转自http://fei-6666.iteye.com/blog/446247,记录下来 一,Service->DAO,只能在Service中注入DAO. 二,DAO只能操作但表数据,跨表操作放 ...
- 微信小程序云开发-云函数-数据库和云函数获取数据的区别
一.数据库获取数据 1.1 数据库获取数据的写法 在本地创建的页面js文件中写代码 1.2 数据库获取数据返回数据限制20条 数据库获取数据,每次返回20条数据(数据库有108条数据) 1.3 数据库 ...