这道题算是我完完整整推的第一道题,写篇题解纪念一下。

题目

废话不多说,直接开始推式子(给新手准备,过程较详细,大佬可自行跳步),以下过程中均假设 \((n\le m)\),\([d=1]\) 类似于代码中的 (d==1)

\[\sum_{i=1}^{n}\sum_{j=1}^mgcd(i,j)^k
\]

直接按套路提取

\[\sum_{d=1}^{n}d^k\sum_{i=1}^{n}\sum_{j=1}^m[gcd(i,j)=d]
\]

等价于

\[\sum_{d=1}^{n}d^k\sum_{i=1}^{n}\sum_{j=1}^m[gcd(\frac{i}{d},\frac{j}{d})=1]
\]

我们改变一下枚举项,枚举 \(\frac{i}{d},\frac{j}{d}\)

\[\sum_{d=1}^{n}d^k\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]
\]

接下来就要用到莫比乌斯函数的性质

\[\sum_{d=1}^{n}d^k\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{x|i}\sum_{x|j}\mu(x)
\]

我们改成枚举 \(\frac{i}{x},\frac{j}{x}\)

\[\sum_{d=1}^{n}d^k\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dx}\rfloor\mu(x)
\]

这个 \(dx\) 让人很不爽,我们把它换个元,令 \(T=dx\)

\[\sum_{T=1}^n\sum_{d|T}d^k\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\mu(\frac{T}{d})
\]

把无关项往前提一提

\[\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}d^k\mu(\frac{T}{d})
\]

整理好后我们会发现这个式子太友善了,后面一部分

\[\sum_{d|T}d^k\mu(\frac{T}{d})
\]

完全就是 \(id_k*\mu\) ( \(*\) 为 \(Dirichlet\) 卷积),所以我们可以知道 \(f(T)=id_k*\mu\) 是一个积性函数。

所以我们只需要研究 \(T|p^x\kern 0.4emx\in N_+ \kern 0.4emp\in prime\)

而由于 \(\mu\) 的性质,(当 \(x=1\) 时)

\[d^k\mu(\frac{T}{d})=\left\{
\begin{aligned}
-1\kern 1.0em(d=1)\\
T^k\kern 1.0em(d=T)\\
\end{aligned}
\right.
\]

所以 \(f(T)=T^k-1\)

当 \(x>1\) 时,有

\[d^k\mu(\frac{T^x}{d})=\left\{
\begin{array}{lcl}
-(T^{x-1})^k\kern 1.0em(d=T^{x-1})\\
(T^x)^k\kern 2.7em(d=T^x)\\
\end{array}
\right.
\]

所以我们线性筛时

\[f_{i×prime_j}=\left\{
\begin{array}{lcl}
f_i×f_{prime_j}\kern 1.0em gcd(prime_j,i)=1\\
f_i×prime_j^k\kern 1.0em (prime_j|i)
\end{array}
\right.
\]

这样我们就可以愉快的线性筛了,而由于那个快被我们遗忘的前半部分用数论分块,所以总体复杂度为 \(O(n+(\text{素数个数})×logk+T×\sqrt{n})\)

\(AC\kern 0.4em CODE:\)

#include<bits/stdc++.h>
#define ri register int
#define p(i) ++i
using namespace std;
const int MOD=1e9+7,N=5e6+7;
inline int read() {
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
int prime[N],vis[N],f[N],cm[N],k;
inline int fpow(int x,int y) {
int res=1;
while(y) {
if (y&1) res=1ll*res*x%MOD;
x=1ll*x*x%MOD;y>>=1;
}
return res;
}
void getmju(int n) {
int tot=0;f[1]=1;
for (ri i(2);i<=n;p(i)) {
if (!vis[i]) prime[p(tot)]=i,cm[tot]=fpow(i,k),f[i]=1ll*(cm[tot]-1+MOD)%MOD;
for (ri j(1);j<=tot&&prime[j]*i<=n;p(j)) {
vis[prime[j]*i]=1;
if (!(i%prime[j])) {
f[i*prime[j]]=1ll*cm[j]*f[i]%MOD;
break;
}
f[i*prime[j]]=1ll*f[i]*f[prime[j]]%MOD;
}
}
for (ri i(2);i<=n;p(i)) f[i]=(f[i]+f[i-1])%MOD;
}
int n[2020],m[2020],mxn;
int main() {
//freopen("rr.out","w",stdout);
int T=read();k=read();
for (ri i(1);i<=T;p(i)) n[i]=read(),m[i]=read(),mxn=max(mxn,min(n[i],m[i]));//小小的优化一下
getmju(mxn);
for (ri i(1);i<=T;p(i)) {
int nn=n[i],mm=m[i];
if (nn>mm) swap(nn,mm);
int ans=0;
for (ri l(1),r;l<=nn;l=r+1) {
r=min(nn/(nn/l),mm/(mm/l));
ans=(ans+1ll*((f[r]-f[l-1]+MOD)%MOD)*(nn/l)%MOD*(mm/l)%MOD)%MOD;
}
printf("%d\n",ans);
}
return 0;
}

题解 P4449 于神之怒加强版的更多相关文章

  1. P4449 于神之怒加强版 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...

  2. P4449 于神之怒加强版

    \(\color{#0066ff}{ 题目描述 }\) 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\) 对1000000007 ...

  3. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  4. 并不对劲的p4449于神之怒加强版

    题目大意 给定\(t,k(t\leq2000,k\leq5*10^6)\) \(t\)组询问,每组给出\(n,m(n,m\leq5*10^6)\)求$\sum_{i=1}^n \sum_{j=1}^m ...

  5. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  6. 【BZOJ4407】于神之怒加强版(莫比乌斯反演)

    [BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...

  7. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  8. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  9. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

随机推荐

  1. buu yxx

    一.这题是南邮的题,异性相吸改编过来的,不过那题有给提示,这题没有233 不过做法确是一样的,winhex打开 直接异或,做法是一样的,直接对应的异或就可以了 a="lovelovelove ...

  2. JetBrains GoLand 以debug运行Go程序时出现could not launch process: decoding dwarf section info at offset 0x0: too short报错之保姆级别解决方案

    这是一篇写给刚开始学习Go语言而在搭建环境可能遇到问题的小萌新的文,大神请自行绕路哈(0-0) 有天,我把Go运用环境升到最新版1.16后,用以前一直在用的JetBrains GoLand 2017. ...

  3. Java | 集合(Collection)和迭代器(Iterator)

    集合(Collection) 集合就是Java中提供的一种 空器,可以用来存储多个数据. 集合和数组都是一个容器,它们有什么区别呢? 数组的长度是固定的,集合的长度是可变的. 数组中存储的是同一类型的 ...

  4. 「ARC103D」 Distance Sums

    「ARC103D」 Distance Sums 传送门 水题. 首先如果让你求树上的节点 \(i\) 到其它所有节点的距离和,这是非常简单的,这就是非常常规的换根 \(\texttt{DP}\). 那 ...

  5. Linux云计算-07_Linux文件服务器之vsftpd服务器

    本章向读者介绍企业vsftpd服务器实战.匿名用户访问.系统用户访问及虚拟用户实战等. 1 vsftpd服务器企业实战 文件传输协议(File Transfer Protocol,FTP),基于该协议 ...

  6. 【记录】如何造一个vite插件(2)

    上一篇已经把vite插件的基础结构搭建起来了,这一次就来聊聊继续完善开发环境. 完善开发环境 生成d.ts文件 先来修改一下lib/index.ts这个文件 export interface user ...

  7. Day3 变量 运算符 及运算符的优先级

    变量 什么是变量: 可以变化的量 Java 是一种强类型语言,每个变量都必须声明其类型. Java变量是程序中最基本的存储单位,其要素包括变量名,变量类型,作用域. 注意事项: 每个变量都有类型, 类 ...

  8. 前端开发入门到进阶第一集【使用sublime快速编写Html和Css】

    1,安装sublime编辑器,下载地址:http://www.sublimetext.com/3 2,要使用sublime的插件机制必须安装package control:https://packag ...

  9. Requests方法 -- 参数化

    import requests#禁用安全请求警告from requests.packages.urllib3.exceptions import InsecureRequestWarningreque ...

  10. [JS]闭包和词法环境

    词法环境 词法环境(lexical environment)由两个部分组成: 环境记录--一个存储所有局部变量作为其属性的对象. 对外部词法环境的引用,与外部代码相关联. 全局词法环境在脚本执行前创建 ...