NOIP 模拟 $19\; \rm v$
题解
一道概率与期望的状压题目
这种最优性的题目,我们一般都是倒着转移,因为它的选择是随机的所以我们无法判断从左还是从右更有,所以我们都搜一遍
时间一定会爆,采用记忆化搜索,一种状态的答案一定是固定的,所以可以记忆化
但是空间也会爆,当状态大于 \(2^{25}\) 次方时,我们选择使用一个 \(map\) ,小于时就用一个数组
对于数组,我们先打上标记,然后直接记忆化
注意,总的状态一定要在最高位再高一位设成 \(1\),因为 \(00000\) 和 \(000\) 不是一种状态,但是若不加,就会判成一种状态
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=getchar();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef double db;
map<int,db> dph;
db dps[1<<25];
int n,k,st,wnm;
char s[33];
int calc(int st,int cur) {
ri tmp=st>>cur,bc=st&((1<<cur-1)-1);
return tmp<<(cur-1)|bc;
}
db dfs(int st,int siz) {
if (siz==n-k) return 0.0;
if (siz>24&&dph.find(st)!=dph.end()) return dph[st];
if (siz<=24&&dps[st]!=-1.0) return dps[st];
register db res=0.0;
ri lm=siz>>1;
for (ri i(1);i<=lm;p(i)) {
ri tmp1=st>>i-1&1,tmp2=st>>siz-i&1;
ri st1=calc(st,i),st2=calc(st,siz-i+1);
res+=2.0*cmax(dfs(st1,siz-1)+(db)tmp1,dfs(st2,siz-1)+(db)tmp2)/siz;
}
if (siz&1) {
lm+=1;
ri tmp1=st>>lm-1&1,st1=calc(st,lm);
res+=(dfs(st1,siz-1)+(db)tmp1)/siz;
}
return siz>24?dph[st]=res:dps[st]=res;
}
inline int main() {
FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
for (ri i(0);i<1<<25;p(i)) dps[i]=-1.0;
read(n),read(k);
scanf("%s",s+1);
for (ri i(1);i<=n;p(i)) st|=(s[i]=='W')<<n-i,wnm+=(s[i]=='W');
st|=1<<n;
printf("%.10lf\n",dfs(st,n));
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $19\; \rm v$的更多相关文章
- NOIP 模拟 $19\; \rm w$
题解 \(by\;zj\varphi\) 树形 \(dp\) 题目 有一个结论:对于一个图,有多少奇度数的点,处以二就是答案,奇度数指的是和它相连的边中被反转的是奇数 证明很好证 那么设 \(dp_{ ...
- NOIP 模拟 $19\; \rm u$
题解 \(by\;zj\varphi\) 二维差分的题目 维护两个标记,一个向下传,一个向右下传: 对于每次更新,我们可以直接更新 \((r,c)+s,(r+l,c)-s\) ; \((r,c+1)- ...
- 7.19 NOIP模拟6
这次考试又一次让mikufun认识到了常数的重要性 T1.那一天我们许下约定 这题一看到D<=1e12,想都没想,矩阵快速幂!然后飞快的码了一个,复杂度n^3logD,让后我观察了一下这个转移矩 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP 模拟 $36\; \rm Cicada 拿衣服$
题解 \(by\;zj\varphi\) 发现右端点固定时,左端点的 \(min-max\) 单调递减,且对于 \(or\) 和 \(and\) 相减,最多有 \(\rm2logn\)个不同的值,且相 ...
- NOIP 模拟 $22\; \rm e$
题解 对于这个 \(abs\) 就是求大于 \(r\) 的最小值,小于 \(r\) 的最大值,建权值线段树或平衡树. 因为是 \(k\) 个点的联通块,就是求它们的 \(lca\) 到它们的链,可持久 ...
- NOIP 模拟 $16\; \rm Lost My Music$
题解 \(by\;zj\varphi\) 一道凸包的题 设 \(\rm dep_u\) 表示节点 \(u\) 的深度,那么原式就可化为 \(-\frac{c_v-c_u}{dep_v-dep_u}\) ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
随机推荐
- 因为它,我差点删库跑路:js防抖与节流
前言 前端踩雷:短时间内重复提交导致数据重复. 对于前端大佬来说,防抖和节流的技术应用都是基本操作.对于"兼职"前端开发的来说,这些都是需要躺平的坑. 我们今天就来盘一盘js防抖与 ...
- nginx的基本使用
下载: https://nginx.org/en/download.html Window下安装: 下载好了之后直接解压就行了.(解压目录切记别含有中文) 启动:1️⃣直接双击nginx.exe2️ ...
- 教你 PXE高效批量网络装机
PXE高效批量网络装机一.PXE概述① PXE (Preboot eXcution Environment)② PXE批量部署的优点③ 服务端④ 客户端二.部署PXE远程安装服务搭建PXE远程安装服务 ...
- chown、chgrp 改变所有者、所属组
chown [option] [所有者][:[所属组]] file... chown指定文件的拥有者或者所属组,可以通过用户名或者用户id.组名.组id来修改,同时可以修改多个文件,文件以空格分割,支 ...
- C语言:数据类型转换
#include <stdio.h> main() { printf("%d\n",sizeof(1)); printf("%d\n",sizeof ...
- adb bat 改进
@REM 生成随机数@echo off@REM 设置延迟变量setlocal enabledelayedexpansionset min=9set max=17set /a mod=!max!-!mi ...
- .netcore第三方登录授权:10分钟急速接入
前言 很多对外应用的开发都考虑接入第三方登录来提高用户的体验感,避免用户进行繁琐的注册登录(登录后的完善资料必不可免). 而QQ.微信.支付宝.淘宝.微博等应用就是首选目标(无他,用户群体大,支持发开 ...
- web系统国际化思路
需求:php开发多个中文系统支持国际化 思路: 提炼各个系统中的中文字符,替换为资源key. 多媒体文件中的中文定位(图片中的中文,中文录音,中文视频,中文模板等). 统一翻译文字.准备资源文件. 各 ...
- SpringBoot通过Ajax批量将excel中数据导入数据库
Spring Boot通过Ajax上传Excel并将数据批量读取到数据库中 适合场景:需要通过excel表格批量向数据库中导入信息 操作流程 [1]前端上传一个excel表格 [2] 后端接收这个ex ...
- 高版本(8以上)tomcat不支持rest中的delete和put方式请求怎么办
出现问题 当我们去访问delete方式和put方式: 后来才知道tomcat8以上是不支持delete方式和put方式 解决方法: 在跳转目标的jsp头文件上改为(加上了isErrorPage=&qu ...