Android消息机制1-Handler(Java层)
一、概述
在整个Android的源码世界里,有两大利剑,其一是Binder IPC机制,,另一个便是消息机制(由Handler/Looper/MessageQueue等构成的)。
Android有大量的消息驱动方式来进行交互,比如Android的四剑客Activity
, Service
, Broadcast
, ContentProvider
的启动过程的交互,都离不开消息机制,Android某种意义上也可以说成是一个以消息驱动的系统。消息机制涉及MessageQueue/Message/Looper/Handler这4个类。
1.1 模型
- Message:消息分为硬件产生的消息(如按钮、触摸)和软件生成的消息;
- MessageQueue:消息队列的主要功能向消息池投递消息(
MessageQueue.enqueueMessage
)和取走消息池的消息(MessageQueue.next
);
- Handler:消息辅助类,主要功能向消息池发送各种消息事件(
Handler.sendMessage
)和处理相应消息事件(Handler.handleMessage
);
- Looper:不断循环执行(
Looper.loop
),按分发机制将消息分发给目标处理者。
1.2 架构图
- Looper有一个MessageQueue消息队列;
- MessageQueue有一组待处理的Message;
- Message中有一个用于处理消息的Handler;
- Handler中有Looper和MessageQueue。
1.3 典型实例
class LooperThread extends Thread {
public Handler mHandler; public void run() {
Looper.prepare(); //【见 2.1】 mHandler = new Handler() { //【见 3.1】
public void handleMessage(Message msg) {
//TODO 定义消息处理逻辑. 【见 3.2】
}
}; Looper.loop(); //【见 2.2】
}
}
二、Looper
2.1 prepare()
prepare(true)
,表示的是这个Looper允许退出,而对于false的情况则表示当前Looper不允许退出。private static void prepare(boolean quitAllowed) {
//每个线程只允许执行一次该方法,第二次执行时线程的TLS已有数据,则会抛出异常。
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
//创建Looper对象,并保存到当前线程的TLS区域
sThreadLocal.set(new Looper(quitAllowed));
}
sThreadLocal
是ThreadLocal类型,下面,先说说ThreadLocal。ThreadLocal.set(T value)
:将value存储到当前线程的TLS区域,源码如下:
public void set(T value) {
Thread currentThread = Thread.currentThread(); //获取当前线程
Values values = values(currentThread); //查找当前线程的本地储存区
if (values == null) {
//当线程本地存储区,尚未存储该线程相关信息时,则创建Values对象
values = initializeValues(currentThread);
}
//保存数据value到当前线程this
values.put(this, value);
}
ThreadLocal.get()
:获取当前线程TLS区域的数据,源码如下:
public T get() {
Thread currentThread = Thread.currentThread(); //获取当前线程
Values values = values(currentThread); //查找当前线程的本地储存区
if (values != null) {
Object[] table = values.table;
int index = hash & values.mask;
if (this.reference == table[index]) {
return (T) table[index + 1]; //返回当前线程储存区中的数据
}
} else {
//创建Values对象
values = initializeValues(currentThread);
}
return (T) values.getAfterMiss(this); //从目标线程存储区没有查询是则返回null
}
sThreadLocal
变量,其定义如下:static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>()
sThreadLocal
的get()和set()操作的类型都是Looper
类型。private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed); //创建MessageQueue对象. 【见4.1】
mThread = Thread.currentThread(); //记录当前线程.
}
prepareMainLooper()
方法,该方法主要在ActivityThread类中使用。public static void prepareMainLooper() {
prepare(false); //设置不允许退出的Looper
synchronized (Looper.class) {
//将当前的Looper保存为主Looper,每个线程只允许执行一次。
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
2.2 loop()
public static void loop() {
final Looper me = myLooper(); //获取TLS存储的Looper对象 【见2.4】
final MessageQueue queue = me.mQueue; //获取Looper对象中的消息队列 Binder.clearCallingIdentity();
//确保在权限检查时基于本地进程,而不是调用进程。
final long ident = Binder.clearCallingIdentity(); for (;;) { //进入loop的主循环方法
Message msg = queue.next(); //可能会阻塞 【见4.2】
if (msg == null) { //没有消息,则退出循环
return;
} //默认为null,可通过setMessageLogging()方法来指定输出,用于debug功能
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg); //用于分发Message 【见3.2】
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
} //恢复调用者信息
final long newIdent = Binder.clearCallingIdentity();
msg.recycleUnchecked(); //将Message放入消息池 【见5.2】
}
}
- 读取MessageQueue的下一条Message;
- 把Message分发给相应的target;
- 再把分发后的Message回收到消息池,以便重复利用。
logging == null
,通过设置setMessageLogging()用来开启debug工作。2.3 quit()
public void quit() {
mQueue.quit(false); //消息移除
}
public void quitSafely() {
mQueue.quit(true); //安全地消息移除
}
void quit(boolean safe) {
// 当mQuitAllowed为false,表示不运行退出,强行调用quit()会抛出异常
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) { //防止多次执行退出操作
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked(); //移除尚未触发的所有消息
} else {
removeAllMessagesLocked(); //移除所有的消息
}
//mQuitting=false,那么认定为 mPtr != 0
nativeWake(mPtr);
}
}
- 当safe =true时,只移除尚未触发的所有消息,对于正在触发的消息并不移除;
- 当safe =flase时,移除所有的消息
2.4 常用方法
2.4.1 myLooper
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
2.4.2 post
public final boolean post(Runnable r) {
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
三、Handler
3.1 创建Handler
3.1.1 无参构造
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
//匿名类、内部类或本地类都必须申明为static,否则会警告可能出现内存泄露
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//必须先执行Looper.prepare(),才能获取Looper对象,否则为null.
mLooper = Looper.myLooper(); //从当前线程的TLS中获取Looper对象【见2.1】
if (mLooper == null) {
throw new RuntimeException("");
}
mQueue = mLooper.mQueue; //消息队列,来自Looper对象
mCallback = callback; //回调方法
mAsynchronous = async; //设置消息是否为异步处理方式
}
3.1.2 有参构造
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
3.2 消息分发机制
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
//当Message存在回调方法,回调msg.callback.run()方法;
handleCallback(msg);
} else {
if (mCallback != null) {
//当Handler存在Callback成员变量时,回调方法handleMessage();
if (mCallback.handleMessage(msg)) {
return;
}
}
//Handler自身的回调方法handleMessage()
handleMessage(msg);
}
}
- 当
Message
的回调方法不为空时,则回调方法msg.callback.run()
,其中callBack数据类型为Runnable,否则进入步骤2; - 当
Handler
的mCallback
成员变量不为空时,则回调方法mCallback.handleMessage(msg)
,否则进入步骤3; - 调用
Handler
自身的回调方法handleMessage()
,该方法默认为空,Handler子类通过覆写该方法来完成具体的逻辑。
3.3 消息发送
MessageQueue.enqueueMessage()
;3.3.1 sendEmptyMessage
public final boolean sendEmptyMessage(int what) {
return sendEmptyMessageDelayed(what, 0);
}
3.3.2 sendEmptyMessageDelayed
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
3.3.3 sendMessageDelayed
public final boolean sendMessageDelayed(Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
3.3.4 sendMessageAtTime
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
3.3.5 sendMessageAtFrontOfQueue
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
return false;
}
return enqueueMessage(queue, msg, 0);
}
3.3.6 post
public final boolean post(Runnable r) {
return sendMessageDelayed(getPostMessage(r), 0);
} private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
3.3.7 postAtFrontOfQueue
public final boolean postAtFrontOfQueue(Runnable r) {
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
3.3.8 enqueueMessage
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis); 【见4.3】
}
小节
Handler.sendEmptyMessage()
等系列方法最终调用MessageQueue.enqueueMessage(msg, uptimeMillis)
,将消息添加到消息队列中,其中uptimeMillis为系统当前的运行时间,不包括休眠时间。3.4 Handler其他方法
3.4.1 obtainMessage
public final Message obtainMessage() {
return Message.obtain(this); 【见5.2】
}
Handler.obtainMessage()
方法,最终调用Message.obtainMessage(this)
,其中this为当前的Handler对象。3.4.2 removeMessages
public final void removeMessages(int what) {
mQueue.removeMessages(this, what, null); 【见 4.5】
}
Handler
是消息机制中非常重要的辅助类,更多的实现都是MessageQueue
, Message
中的方法,Handler的目的是为了更加方便的使用消息机制。四、MessageQueue
private native static long nativeInit();
private native static void nativeDestroy(long ptr);
private native void nativePollOnce(long ptr, int timeoutMillis);
private native static void nativeWake(long ptr);
private native static boolean nativeIsPolling(long ptr);
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
4.1 创建MessageQueue
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
//通过native方法初始化消息队列,其中mPtr是供native代码使用
mPtr = nativeInit();
}
4.2 next()
Message next() {
final long ptr = mPtr;
if (ptr == 0) { //当消息循环已经退出,则直接返回
return null;
}
int pendingIdleHandlerCount = -1; // 循环迭代的首次为-1
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//阻塞操作,当等待nextPollTimeoutMillis时长,或者消息队列被唤醒,都会返回
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
//当消息的Handler为空时,则查询异步消息
if (msg != null && msg.target == null) {
//当查询到异步消息,则立刻退出循环
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
//当异步消息触发时间大于当前时间,则设置下一次轮询的超时时长
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// 获取一条消息,并返回
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
//设置消息的使用状态,即flags |= FLAG_IN_USE
msg.markInUse();
return msg; //成功地获取MessageQueue中的下一条即将要执行的消息
}
} else {
//没有消息
nextPollTimeoutMillis = -1;
}
//消息正在退出,返回null
if (mQuitting) {
dispose();
return null;
}
//当消息队列为空,或者是消息队列的第一个消息时
if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
//没有idle handlers 需要运行,则循环并等待。
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
//只有第一次循环时,会运行idle handlers,执行完成后,重置pendingIdleHandlerCount为0.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; //去掉handler的引用
boolean keep = false;
try {
keep = idler.queueIdle(); //idle时执行的方法
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
//重置idle handler个数为0,以保证不会再次重复运行
pendingIdleHandlerCount = 0;
//当调用一个空闲handler时,一个新message能够被分发,因此无需等待可以直接查询pending message.
nextPollTimeoutMillis = 0;
}
}
nativePollOnce
是阻塞操作,其中nextPollTimeoutMillis
代表下一个消息到来前,还需要等待的时长;当nextPollTimeoutMillis = -1时,表示消息队列中无消息,会一直等待下去。IdleHandler
中的方法。当nativePollOnce()返回后,next()从mMessages
中提取一个消息。nativePollOnce()
在native做了大量的工作,想进一步了解可查看 Android消息机制2-Handler(native篇)。4.3 enqueueMessage
boolean enqueueMessage(Message msg, long when) {
// 每一个普通Message必须有一个target
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) { //正在退出时,回收msg,加入到消息池
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
//p为null(代表MessageQueue没有消息) 或者msg的触发时间是队列中最早的, 则进入该该分支
msg.next = p;
mMessages = msg;
needWake = mBlocked; //当阻塞时需要唤醒
} else {
//将消息按时间顺序插入到MessageQueue。一般地,不需要唤醒事件队列,除非
//消息队头存在barrier,并且同时Message是队列中最早的异步消息。
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p;
prev.next = msg;
}
//消息没有退出,我们认为此时mPtr != 0
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
MessageQueue
是按照Message触发时间的先后顺序排列的,队头的消息是将要最早触发的消息。当有消息需要加入消息队列时,会从队列头开始遍历,直到找到消息应该插入的合适位置,以保证所有消息的时间顺序。4.4 removeMessages
void removeMessages(Handler h, int what, Object object) {
if (h == null) {
return;
}
synchronized (this) {
Message p = mMessages;
//从消息队列的头部开始,移除所有符合条件的消息
while (p != null && p.target == h && p.what == what
&& (object == null || p.obj == object)) {
Message n = p.next;
mMessages = n;
p.recycleUnchecked();
p = n;
}
//移除剩余的符合要求的消息
while (p != null) {
Message n = p.next;
if (n != null) {
if (n.target == h && n.what == what
&& (object == null || n.obj == object)) {
Message nn = n.next;
n.recycleUnchecked();
p.next = nn;
continue;
}
}
p = n;
}
}
}
4.5 postSyncBarrier
public int postSyncBarrier() {
return postSyncBarrier(SystemClock.uptimeMillis());
} private int postSyncBarrier(long when) {
synchronized (this) {
final int token = mNextBarrierToken++;
final Message msg = Message.obtain();
msg.markInUse();
msg.when = when;
msg.arg1 = token; Message prev = null;
Message p = mMessages;
if (when != 0) {
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
if (prev != null) {
msg.next = p;
prev.next = msg;
} else {
msg.next = p;
mMessages = msg;
}
return token;
}
}
public void removeSyncBarrier(int token) {
synchronized (this) {
Message prev = null;
Message p = mMessages;
//从消息队列找到 target为空,并且token相等的Message
while (p != null && (p.target != null || p.arg1 != token)) {
prev = p;
p = p.next;
}
final boolean needWake;
if (prev != null) {
prev.next = p.next;
needWake = false;
} else {
mMessages = p.next;
needWake = mMessages == null || mMessages.target != null;
}
p.recycleUnchecked(); if (needWake && !mQuitting) {
nativeWake(mPtr);
}
}
}
五、 Message
5.1 消息对象
Message
表示,Message
主要包含以下内容:数据类型 | 成员变量 | 解释 |
int | what | 消息类别 |
long | when | 消息触发时间 |
int | arg1 | 参数1 |
int | arg2 | 参数2 |
Object | obj | 消息内容 |
Handler | target | 消息响应方 |
Runnable | callback | 回调方法 |
5.2 消息池
sPool
的数据类型为Message,通过next成员变量,维护一个消息池;静态变量MAX_POOL_SIZE
代表消息池的可用大小;消息池的默认大小为50。5.2.1 obtain
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null; //从sPool中取出一个Message对象,并消息链表断开
m.flags = 0; // 清除in-use flag
sPoolSize--; //消息池的可用大小进行减1操作
return m;
}
}
return new Message(); // 当消息池为空时,直接创建Message对象
}
5.2.2 recycle
public void recycle() {
if (isInUse()) { //判断消息是否正在使用
if (gCheckRecycle) { //Android 5.0以后的版本默认为true,之前的版本默认为false.
throw new IllegalStateException("This message cannot be recycled because it is still in use.");
}
return;
}
recycleUnchecked();
} //对于不再使用的消息,加入到消息池
void recycleUnchecked() {
//将消息标示位置为IN_USE,并清空消息所有的参数。
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) { //当消息池没有满时,将Message对象加入消息池
next = sPool;
sPool = this;
sPoolSize++; //消息池的可用大小进行加1操作
}
}
}
六、总结
- Handler通过sendMessage()发送Message到MessageQueue队列;
- Looper通过loop(),不断提取出达到触发条件的Message,并将Message交给target来处理;
- 经过dispatchMessage()后,交回给Handler的handleMessage()来进行相应地处理。
- 将Message加入MessageQueue时,处往管道写入字符,可以会唤醒loop线程;如果MessageQueue中没有Message,并处于Idle状态,则会执行IdelHandler接口中的方法,往往用于做一些清理性地工作。
- Message的回调方法:
message.callback.run()
,优先级最高; - Handler的回调方法:
Handler.mCallback.handleMessage(msg)
,优先级仅次于1; - Handler的默认方法:
Handler.handleMessage(msg)
,优先级最低。
Android消息机制1-Handler(Java层)的更多相关文章
- Android开发之漫漫长途 ⅥI——Android消息机制(Looper Handler MessageQueue Message)
该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...
- Android开发之漫漫长途 Ⅶ——Android消息机制(Looper Handler MessageQueue Message)
该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...
- Android 消息机制 (Handler、Message、Looper)
综合:http://blog.csdn.net/dadoneo/article/details/7667726 与 http://android.tgbus.com/Android/androidne ...
- Android消息机制探索(Handler,Looper,Message,MessageQueue)
概览 Android消息机制是Android操作系统中比较重要的一块.具体使用方法在这里不再阐述,可以参考Android的官方开发文档. 消息机制的主要用途有两方面: 1.线程之间的通信.比如在子线程 ...
- Android消息机制之Handler
Android为什么要提供Handler Android建议我们不要在UI线程中执行耗时操作,因为这很容易导致ANR异常(在Android源码中我们可以看到,UI如果对用户的操作超过5秒无响应,就会报 ...
- android 消息机制,handler机制,messageQueue,looper
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha handler 就是 处理器 . 用来处理消息, 发送消息. handler 就 ...
- Android消息机制1-Handler(Java层)(转)
转自:http://gityuan.com/2015/12/26/handler-message-framework/ 相关源码 framework/base/core/java/andorid/os ...
- Android 进阶14:源码解读 Android 消息机制( Message MessageQueue Handler Looper)
不要心急,一点一点的进步才是最靠谱的. 读完本文你将了解: 前言 Message 如何获取一个消息 Messageobtain 消息的回收利用 MessageQueue MessageQueue 的属 ...
- Android消息机制:Looper,MessageQueue,Message与handler
Android消息机制好多人都讲过,但是自己去翻源码的时候才能明白. 今天试着讲一下,因为目标是讲清楚整体逻辑,所以不追究细节. Message是消息机制的核心,所以从Message讲起. 1.Mes ...
随机推荐
- 第六章 time库的使用
time库概述 time库是python中处理时间的标准库 1.用于计算机时间的表达 2.提供获取系统时间并格式化输出功能 3.提供系统级精确计时功能,用于程序性能分析 1 import time 2 ...
- 将gitlab内置node_exporter提供外部prometheus使用
目录 修改gitlab的配置 重新初始化配置 gitlab服务已经包含了node_exporter服务,但是配置文件限制了9100端口的访问,所以主机信息不能直接被外部的prometheus收集 修改 ...
- C语言:清空缓冲区
缓冲区的优点很明显,它加快了程序的运行速度,减少了硬件的读写次数,让整个计算机变得流畅起来:但是,缓冲区也带来了一些负面影响,经过前面几节的学习相信读者也见识到了.那么,该如何消除这些负面影响呢?思路 ...
- qtscrcpy使用
点击"USB线"一栏中的"刷新设备列表"按钮,随后设备序列号会显示出来: ·点击"获取设备IP",随后在"无线"一栏中会 ...
- PYTHON 读取ADB记录文件输入ACTIVITY
import re lb=[] with open("daaa.txt",encoding="utf8") as f: data = f.readlines() ...
- canvas实现任意正多边形的移动(点、线、面)
前言 我在上一篇文章简单实现了在canvas中移动矩形(点线面),不清楚的小伙伴请看我这篇文章:用canvas 实现矩形的移动(点.线.面)(1). ok,废话不多说,直接进入文章主题, 上一篇文章我 ...
- 微信小程序云开发-数据查询的两种写法
从数据中查询数据有两种方法: 一.js文件的写法 1.使用传统的get方法 2.使用ES6简洁写法,推荐使用此方法 二.wxml文件的代码 把请求的数据显示在页面上.
- 你有没有乱用“leader”,担当是个好东西
PS:此文为个人认知,不足处请多多批评. 近期在一线leader(经理)身上发现了几个case,然后又回想起前几年自己做的一些傻事,可能都属于明面上leader不会说什么,但私下会有情绪的类型: Ca ...
- [考试总结]noip模拟6
我好菜啊 真上次第二这次倒二... 因为昨天还没有改完所有的题所以就留到今天来写博客了 这次考试总结的教训有很多吧,反正处处体现XIN某人的laji,自己考试的是后本以为一共四个题目,三个题目都没有看 ...
- python开发包之pyecharts
一.python包国内源网址有: 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/ ...