\(\mathcal{Description}\)

  Link.

  呐……不想概括题意,自己去读叭~

\(\mathcal{Solution}\)

  如果仅有 1. 3. 操作,能不能做?

  ——简单整体二分。

  如果仅有 1. 2. 操作,能不能实时维护每个位置还剩下多少人?累计走了多少人?

  ——吉司机线段树。

  所以,离线下来,把上两个重工业揉在一起就能粗暴地过掉这道题√ 复杂度 \(\mathcal O(n\log^2n)\)(\(n,m,q\) 同阶)。

  有 \(\mathcal O(n\log n)\) 而且短得多的算法欸,问 Tiw 嘛 qwq。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <vector> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL;
#define int LL template<typename Tp = int>
inline Tp rint() {
Tp x = 0; int s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() );
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} inline LL lmin( const LL a, const LL b ) { return a < b ? a : b; } const int MAXN = 2.5e5;
const LL LINF = 1ll << 60;
int n, m, q;
std::vector<int> allq; struct Event {
int a, b, c; LL d;
inline void read() {
if ( int op = rint(); op == 1 ) {
a = rint(), b = rint(), c = rint(), d = rint();
} else if ( op == 2 ) {
a = -1, b = rint(), c = rint(), d = rint();
} else {
a = b = -2, c = rint(), d = rint<LL>();
}
}
} evt[MAXN + 5]; struct SegmentTree {
LL tag[MAXN << 2]; inline void clear( const int u, const int l, const int r ) {
tag[u] = 0;
if ( l == r ) return ;
int mid = l + r >> 1;
clear( u << 1, l, mid ), clear( u << 1 | 1, mid + 1, r );
} inline void modify( const int u, const int l, const int r,
const int ml, const int mr, const LL v ) {
if ( ml <= l && r <= mr ) return void( tag[u] += v );
int mid = l + r >> 1;
if ( ml <= mid ) modify( u << 1, l, mid, ml, mr, v );
if ( mid < mr ) modify( u << 1 | 1, mid + 1, r, ml, mr, v );
} inline LL query( const int u, const int l, const int r, const int x ) {
if ( l == r ) return tag[u];
int mid = l + r >> 1;
if ( x <= mid ) return tag[u] + query( u << 1, l, mid, x );
else return tag[u] + query( u << 1 | 1, mid + 1, r, x );
}
} sgt; // It's for both Init and Solve. namespace Init { struct JiSegmentTree {
LL tag1[MAXN << 2], tag2[MAXN << 2], mnv[MAXN << 2], smn[MAXN << 2]; inline void clear( const int u, const int l, const int r ) {
smn[u] = LINF;
if ( l == r ) return ;
int mid = l + r >> 1;
clear( u << 1, l, mid ), clear( u << 1 | 1, mid + 1, r );
} inline void pushad( const int u, const LL v1, const LL v2 ) {
tag1[u] += v1, mnv[u] += v1;
if ( smn[u] != LINF ) smn[u] += v2, tag2[u] += v2;
} inline void pushdn( const int u ) {
int a = mnv[u << 1], b = mnv[u << 1 | 1];
if ( a <= b ) pushad( u << 1, tag1[u], tag2[u] );
else pushad( u << 1, tag2[u], tag2[u] );
if ( b <= a ) pushad( u << 1 | 1, tag1[u], tag2[u] );
else pushad( u << 1 | 1, tag2[u], tag2[u] );
tag1[u] = tag2[u] = 0;
} inline void pushup( const int u ) {
mnv[u] = lmin( mnv[u << 1], mnv[u << 1 | 1] );
smn[u] = LINF;
if ( mnv[u] < mnv[u << 1] ) smn[u] = lmin( smn[u], mnv[u << 1] );
if ( mnv[u] < mnv[u << 1 | 1] )
smn[u] = lmin( smn[u], mnv[u << 1 | 1] );
if ( mnv[u] < smn[u << 1] ) smn[u] = lmin( smn[u], smn[u << 1] );
if ( mnv[u] < smn[u << 1 | 1] )
smn[u] = lmin( smn[u], smn[u << 1 | 1] );
} inline void modify( const int u, const int l, const int r,
const int ml, const int mr, const LL v ) {
if ( ml <= l && r <= mr ) return pushad( u, v, v );
int mid = l + r >> 1; pushdn( u );
if ( ml <= mid ) modify( u << 1, l, mid, ml, mr, v );
if ( mid < mr ) modify( u << 1 | 1, mid + 1, r, ml, mr, v );
pushup( u );
} inline void upto( const int u, const int l, const int r,
const int ul, const int ur, const LL v ) {
if ( mnv[u] >= v ) return ;
if ( ul <= l && r <= ur && v < smn[u] )
return pushad( u, v - mnv[u], 0 );
int mid = l + r >> 1; pushdn( u );
if ( ul <= mid ) upto( u << 1, l, mid, ul, ur, v );
if ( mid < ur ) upto( u << 1 | 1, mid + 1, r, ul, ur, v );
pushup( u );
} inline LL query( const int u, const int l, const int r, const int x ) {
if ( l == r ) return mnv[u];
int mid = l + r >> 1; pushdn( u );
if ( x <= mid ) return query( u << 1, l, mid, x );
else return query( u << 1 | 1, mid + 1, r, x );
}
} jsgt; inline void init() {
jsgt.clear( 1, 1, n ); rep ( i, 1, q ) {
if ( evt[i].a >= 0 ) {
sgt.modify( 1, 1, n, evt[i].a, evt[i].b, evt[i].d );
jsgt.modify( 1, 1, n, evt[i].a, evt[i].b, evt[i].d );
} else if ( evt[i].a == -1 ) {
jsgt.modify( 1, 1, n, evt[i].b, evt[i].c, -evt[i].d );
jsgt.upto( 1, 1, n, evt[i].b, evt[i].c, 0 );
} else {
allq.push_back( i );
evt[i].d += sgt.query( 1, 1, n, evt[i].c )
- jsgt.query( 1, 1, n, evt[i].c );
}
}
} } // namespace Init. namespace Solve { int ans[MAXN + 5]; inline void divide( const int l, const int r, const std::vector<int>& qvec ) {
if ( qvec.empty() ) return ;
if ( l == r ) {
for ( int q: qvec ) ans[q] = l;
return ;
} int mid = l + r >> 1;
rep ( i, l, mid ) if ( evt[i].a >= 0 ) {
sgt.modify( 1, 1, n, evt[i].a, evt[i].b, evt[i].d );
} std::vector<int> qlef, qrig;
for ( int q: qvec ) {
if ( sgt.query( 1, 1, n, evt[q].c ) >= evt[q].d ) qlef.push_back( q );
else qrig.push_back( q );
} divide( mid + 1, r, qrig );
rep ( i, l, mid ) if ( evt[i].a >= 0 ) {
sgt.modify( 1, 1, n, evt[i].a, evt[i].b, -evt[i].d );
} divide( l, mid, qlef );
} inline void solve() {
sgt.clear( 1, 1, n );
divide( 1, q + 1, allq );
rep ( i, 1, q ) if ( evt[i].a == -2 ) {
wint( ans[i] > i ? 0 : evt[ans[i]].c ), putchar( '\n' );
}
} } // namespace Solve. signed main() {
n = rint(), m = rint(), q = rint();
rep ( i, 1, q ) evt[i].read(); Init::init();
Solve::solve();
return 0;
}

Solution -「JOISC 2021」「LOJ #3489」饮食区的更多相关文章

  1. Solution -「JOISC 2021」「LOJ #3495」聚会 2

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树.称点集 \(S\) 到结点 \(u\) 的会合距离为 \(\sum_{v\in S}\ope ...

  2. Solution -「JOISC 2021」「LOJ #3491」道路建设

    \(\mathcal{Description}\)   Link.   平面上有 \(n\) 个互不重合的点 \((x_{1..n},y_{1..n})\),求其两两曼哈顿距离的前 \(m\) 小值. ...

  3. Solution -「JOISC 2021」古老的机器

    \(\mathcal{Description}\)   Link.   这是一道通信题.   对于长度为一个 \(n\),仅包含字符 X, Y, Z 的字符串 \(s\),将其中 \(n\) 个字符按 ...

  4. Loj #2731 「JOISC 2016 Day 1」棋盘游戏

    Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...

  5. 【LOJ】#3036. 「JOISC 2019 Day3」指定城市

    LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...

  6. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  7. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  8. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  9. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

随机推荐

  1. Linux上天之路(一)之Linux前世今生

    0. Linux的前世今生 linux是什么 linux是一个计算机的操作系统,与windows类似,是一款系统软件 操作系统 说到操作系统其实我们首先要思考三个问题: 1)操作系统是什么? 2)操作 ...

  2. Cookie.Session到Token和JWT

    一.session和cookie: 现在一般都是session和cookie一起用,一起提.但是他们俩其实不是一定要在一起. session的产生原因是,http协议是无状态的 这就导致了,不同的用户 ...

  3. vue中动画的使用

    不要在router-view的外层使用动画!不要在router-view的外层使用动画!不要在router-view的外层使用动画! 重要的事情说三遍,在app.vue中自以为奇思妙想(实际是脑残)在 ...

  4. CSS相关知识及入门

    CSS(层叠样式表) 作用 修饰HTML页面,美化 CSS代码规范 放置规范 在<style>标签内容体中书写样式代码 <style>标签放置在<head>标签内. ...

  5. 【C primer plus】初始化链表函数的错误

    C primer plus第六版 的一处错误 第五百页17.3.4 实现接口的程序清单17.5中的初始化链表函数有误 #源代码 void InitializeList(List * plist) { ...

  6. access偏移注入原理

    前言:近段时间在学习access偏移注入时,在网上查询了大量的资料,感觉很多资料讲解的十分模糊并且我个人认为有很多不够严谨的地方,于是我便在线下经过大量测试,写出以下文章,如有错误,望指出. 如要转载 ...

  7. Solon Web 开发,一、开始

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  8. Excel与MySQL数据库的导入与导出

    应用场景 在许多时候,我们希望数据能够很好地在各个系统之间转移,同时便于非专业人员阅读,如果程序员一点点打字导出的话,不知道要打到什么时候,于是我们便采用日常工作中常用的Excel表格来作为媒介,将数 ...

  9. 学习Java第16天

    今天学习了HTML的表格,列表标签及表单. 顺序有点乱,明天学习swing awt,当时这部分大概过了一下,明天看视频 主要问题还是新概念较多,需要多理解,多记忆.

  10. plsql 函数的定义 包规范和包主体。

    /* 一.函数? 1.函数定义 函数的内容 根据实际需要来定义 2.使用的方式 */ -- 定义函数 根据部门编号查询出部门的总人数 create or replace function fn( de ...