Note -「单位根反演」学习笔记
\(\mathcal{Preface}\)
单位根反演,顾名思义就是用单位根变换一类式子的形式。有关单位根的基本概念可见我的这篇博客。
\(\mathcal{Formula}\)
单位根反演的公式很简单:
\]
\(\mathcal{Proof}\)
分类讨论:
- \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\sum_{i=0}^{k-1}1=1\)。
- \(k\not=n\). 等比数列求和,右侧为 \(\frac{1}k\cdot\frac{1-\omega_k^{kn}}{1-\omega_k^n}\),其中 \(\omega_k^{kn}=1\),故分子为 \(0\),分母不为 \(0\),式子的值为 \(0\)。
综上,得证。
\(\mathcal{Inference}\)
实际问题中,我们往往需要求出对于某个多项式(多为生成函数)\(f\) 的特定倍数次数的系数和。即求:
\]
运用单位根反演的基本公式变形:
\sum_{i=0}^{\lfloor\frac{n}k\rfloor}[x^{ik}]f(x)&=\sum_{i=0}^n[k|i][x^i]f(x)\\
&=\sum_{i=0}^n[x^i]f(x)\cdot\frac{1}k\sum_{j=0}^{k-1}\omega_k^{ij}\\
&=\frac{1}k\sum_{j=0}^{k-1}\sum_{i=0}^n[x^i]f(x)(\omega_k^j)^i\\
&=\frac{1}k\sum_{j=0}^{k-1}f(\omega_k^j)
\end{aligned}
\]
只要能快速求出 \(f\) 在所有 \(k\) 次单位根处的点值,就能 \(\mathcal O(k)\) 得出原式的值啦。
更方便的形式,若我们想求 \(i\bmod k=r\) 时 \([x^i]f(x)\) 之和,只需要在运用反演时移动一下 \(\omega_k\) 的指标:
\sum_{i=0}^n[i\bmod k=r][x^i]f(x)&=\frac{1}k\sum_{i=0}^n\left(\sum_{j=0}^{k-1}\omega_k^{j(i-r)} \right)[x^i]f(x)\\
&=\frac{1}k\sum_{j=0}^{k-1}\omega_{k}^{-jr}f(\omega_k^j)
\end{aligned}
\]
当然,我们常用原根代替单位根。
\(\mathcal{Examples}\)
「LOJ 6485」 LJJ 学二项式定理 & my solution.
Note -「单位根反演」学习笔记的更多相关文章
- Note -「Lagrange 插值」学习笔记
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...
- Note -「动态 DP」学习笔记
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...
- Note -「Mobius 反演」光速入门
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...
- 「Manacher算法」学习笔记
觉得这篇文章写得特别劲,插图非常便于理解. 目的:求字符串中的最长回文子串. 算法思想 考虑维护一个数组$r[i]$代表回文半径.回文半径的定义为:对于一个以$i$为回文中心的奇数回文子串,设其为闭区 ...
- 「FHQ Treap」学习笔记
话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...
- 「线性基」学习笔记and乱口胡总结
还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...
- 「Link-Cut Tree」学习笔记
Link-Cut Tree,用来解决动态树问题. 宏观上,LCT维护的是森林而非树.因此存在多颗LCT.有点像动态的树剖(链的确定通过$Access$操作),每条链用一颗$splay$维护.$spla ...
- 「AC自动机」学习笔记
AC自动机(Aho-Corasick Automaton),虽然不能够帮你自动AC,但是真的还是非常神奇的一个数据结构.AC自动机用来处理多模式串匹配问题,可以看做是KMP(单模式串匹配问题)的升级版 ...
- 【Java】「深入理解Java虚拟机」学习笔记(1) - Java语言发展趋势
0.前言 从这篇随笔开始记录Java虚拟机的内容,以前只是对Java的应用,聚焦的是业务,了解的只是语言层面,现在想深入学习一下. 对JVM的学习肯定不是看一遍书就能掌握的,在今后的学习和实践中如果有 ...
随机推荐
- @RestController和@Controller的关系
@RestController注解,相当于@Controller+@ResponseBody两个注解的结合
- Nacos配置管理最佳实践
Nacos一个最常用的功能就是配置中心,在具体使用时往往是多个团队,甚至整个公司的研发团队都使用同一个Nacos服务.那么使用时如何保证配置在各个团队之间的隔离,又能保证配置管理的便捷性?下面就来介绍 ...
- UVA 156 Ananagrams (STL multimap & set)
原题链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=98&p ...
- 华为matebook x pro监听耳机电流声
问题 左耳出现电流声,播放声音就电流声,关闭声音10s后才消失 设备 matebook x pro2018 hd206耳机 原因 matebook设计缺陷充电电流声大,毕竟早期type C快充,监听耳 ...
- HBase之MinorCompact全程解析
转自:https://blog.csdn.net/u014297175/article/details/50456147 Compact作用 当MemStore超过阀值的时候,就要flush到HDFS ...
- java多态转型II
1 package face_09; 2 3 /* 4 * 毕老师和毕姥爷的故事. 5 */ 6 class 毕姥爷 { 7 void 讲课() { 8 System.out.println(&quo ...
- 负载均衡的比例(权重,ip_hash,轮询)
目录 一:负载均衡的比例 1.轮询 2.权重 3.ip_hash 二:测试轮询 1.测试 2.重启 3.网址测试 三:测试ip_hash 一:负载均衡的比例 1.轮询 # 默认情况下,Nginx负载均 ...
- 『无为则无心』Python基础 — 43、文件备份的实现
目录 1.需求 2.步骤 3.代码实现 (1)接收用户输入目标文件名 (2)规划备份文件名 (3)备份文件写入数据 (4)思考 (5)完整编码 4.再来一个小练习 1.需求 用户输入当前目录下任意文件 ...
- Python与Javascript相互调用超详细讲解(四)使用PyNode进行Python与Node.js相互调用项(cai)目(keng)实(jing)践(yan)
目录 前提 安装 使用 const pynode = require('@fridgerator/pynode')的时候动态链接错误 ImportError: math.cpython-39-x86_ ...
- Linux 安装和 连接xshell
一.介绍和安装 /*一.linux:? 为什么要学习它. 常见的操作系统? 1.windows, linux,mac 使用命令行进行操作 Windows cmd Linux 和Mac 中的命令行是 s ...