期望长度P1365,CF235B,P1654
期望长度
定义
这里期望长度表示一段序列连续长度的期望。具体来说,对于一段序列,每个点都有一个概率连续和断开。求所有连续序列和的期望。
当然,对于以上期望长度的定义,我们只需要求出每个点存在的期望的和即可。但是题目永远不会这么简单。
Osu!
Osu!是一个音乐游戏,玩家需要对音符在恰当时候进行敲击来通关。一次到位的敲击为o,不到位的为x。一段连续到位的敲击,即combo次数为这段序列的长度。
我们接下来讨论的三个题都和这个游戏有关。
- level1
一段Osu!序列为一串字符,包括'o','x','?'。其中'o','x'的定义如上,'?'表示此位置有一半的几率为'o'。游戏得分为所有combo次数平方的和。求得分的期望。
也就是我们要求所有序列长度平方的期望和。
期望
期望具有线性性,但不具有积性。这意味着我们无法对求得的期望长度直接平方来得到答案。
并且请注意一点,若一个值的期望为0,并不意味着它的平方的期望为0。这可以帮助我们理解期望的线性性。
期望的平方在大多数情况下并没有什么实际意义。
但是,期望具有线性性。
考虑我们的答案,实际上就是长度平方的期望。考虑往后的转移。(设\(f1\)表示当前期望长度,\(f2\)表示答案,即长度平方期望的和)
根据公式\((len+1)^2=len^2+2*len+1\)若后一位\(i\)为'o',则后一位\(i\)的期望值分别为
\(f1_i=f1_{i-1}+1\)
\(f2_i=f2_{i-1}+2*f1_{i-1}+1\)
即此位\(f2\)的值其实是可以从前一位线性转移来的。所谓线性,就是其幂为1。
同样,考虑第\(i\)位为'x'的情况,\(f1=0\),\(f2\)直接继承前面的答案。
然后我们就可以得到'?'的情况:上述两种情况和除以2.
\(f1_i=\frac{f1_{i-1}+1}2\)
\(f2_i=\frac{2*f2_{i-1}+2*f1_{i-1}+1}{2}\)
于是我们就能完成P1365
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
int n;
double f,len,p;
inline void work(){
n=read();
char c=getchar();
while(c!='o' and c!='?' and c!='x')c=getchar();
while(n--){
if(c=='o')f=(f+2*len+1),len=len+1;
else if(c=='?')f=(2*(f+len)+1)/2,len=(len+1)/2;
else len=0;
}
printf("%.4lf",f);
}
}
signed main(){
star::work();
return 0;
}
- level2
我们发现,其实对于概率任意的情况也可以推出来。上题三种字符其实就是对应概率为1,0.5,0的三种情况。
设\(p\)为该点为'o'的概率,则有:
\(f2_i=f2_{i-1}+p*(2*f1_{i-1}+1)\)
\(f1_i=p*(f1_{i-1}+1)\)
所以上题的代码的核心部分等同于:
while(n--){
p=c=='o'?1.0:c=='?'?0.5:0.0;
f=f+p*(2*len+1);
len=p*(len+1);
c=getchar();
}
于是我们可以完成CF235B
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
int n;
double f,len,p;
inline void work(){
n=read();
while(n--){
scanf("%lf",&p);
f=(f-len*len+(len+1)*(len+1))*p+f*(1-p);
len=p*(len+1);
}
printf("%.8lf",f);
}
}
signed main(){
star::work();
return 0;
}
- level3
我们已经完成了对于长度平方的期望和的问题。那么我们就可以解决新的问题:对于答案为所有combo长度立方的和的期望我们怎么求解呢?
根据期望的线性性,我们再维护一个平方的期望即可。
根据公式\((len+1)^3=len^3+3len^2+3len+1\),我们可以得到以下转移:
f2_i=p*(f2_{i-1}+2*f1_{i-1}+1)\\
f1_i=p*(f1_{i-1}+1);
\]
注意!
我承认我的变量名的定义有亿点点毒瘤,因为读者可以清楚地发现在上一题中\(f2\)的转移为\(f2_i=f2_{i-1}+p*(2*f1_{i-1}+1)\)而非当前转移。实际上在定义\(f2\)时我的定义为答案而非二次项的期望,根据期望的线性性,答案是可以继承上一次的答案进行转移的,也就是对于'x'的情况继承\(f2\)而非\(0\)的原因。
在此level中我对\(f2\)重新定义为长度二次幂的期望。希望不要因为我的毒瘤误导大家。
相同的,我对\(f3\)的定义为答案,因此需要继承之前的答案。
于是我们就完成了P1654
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
int n;
double f1,f2,f3;
inline void work(){
n=read();
double p;
while(n--){
scanf("%lf",&p);
f3=f3+p*(3*(f2+f1)+1);
f2=p*(f2+2*f1+1);
f1=p*(f1+1);
}
printf("%.1lf",f3);
}
}
signed main(){
star::work();
return 0;
}
总结
期望好神奇。
期望长度P1365,CF235B,P1654的更多相关文章
- 洛谷P1365 WJMZBMR打osu! / Easy——期望DP
题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...
- 概率和期望dp
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333 概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- tyvj P1952 Easy(递推+期望)
P1952 Easy 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下 ...
- Codeforces 123E Maze(树形DP+期望)
[题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...
- bzoj-3450 Easy概率DP 【数学期望】
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a ...
- [ZJOI2015]地震后的幻想乡(期望+dp)
题目描述 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任务是尽快让幻想 ...
- 【题解】 bzoj3450 JoyOI1952 Easy (期望dp)
题面戳我 Solution 期望的题目真心不太会 定义状态\(f[i]\)表示到第\(i\)期望长度,\(dp[i]\)表示期望分数 如果上一步的持续\(o\)长度为\(L\),那么贡献是\(L^2\ ...
- #3 Codeforces-865C Gotta Go Fast(期望dp)
题意:一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每通过一关后可以选择继续下一关或者时间清0并从第一关开始,先要求通过所有关卡的时间和不 ...
随机推荐
- 「题解」小 R 打怪兽 monster
本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目描述 小 R 最近在玩一款游戏.在游戏中,小 R 要依次打 \(n\) 个怪兽,他需要打败至少 \(k\) 个怪兽才能通关.小 ...
- 「题解」USACO15FEB Fencing the Herd G
本文将同步发布于: 洛谷博客: csdn: 博客园: 简书: 题目 题目链接:洛谷 P3122.USACO 官网. 题意概述 给你平面上的一些点和直线,有两种操作: 新加入一个点 \((x,y)\): ...
- 【UG二次开发】创建、查询、编辑成型特征的函数
创建成型特征函数UF_MODL_create_boss 通过设置凸台的参数建立凸台特征UF_MODL_create_rect_pad 通过设置矩形凸垫的参数建立矩形凸垫特征UF_MODL_create ...
- java并发编程JUC第十篇:CyclicBarrier线程同步
在之前的文章中已经为大家介绍了java并发编程的工具:BlockingQueue接口.ArrayBlockingQueue.DelayQueue.LinkedBlockingQueue.Priorit ...
- Java字符串比较(3种方法)以及对比 C++ 时的注意项
字符串比较是常见的操作,包括比较相等.比较大小.比较前缀和后缀串等.在 Java 中,比较字符串的常用方法有 3 个:equals() 方法.equalsIgnoreCase() 方法. compar ...
- 六、JavaSE语言基础之数组
一维数组(关键字[]) 关于数组的一些概念: 数组是多个基本数据有机组合形成一个复杂数据,是一个引用数据类型数据. 数组:装指定数量元素类型相同的数据的容器. 元素:在数组中,数组中的每个数据称之为数 ...
- Redis之复制
1.配置 1.1 建立复制 参与复制的Redis实例划分为主节点(master) 和从节点(slave).默认情况下,Redis都是主节点.每个从节点只能有一个主节点,而主节点可以同时具有多个从节点. ...
- Vue前端基础学习
vue-cli vue-cli 官方提供的一个脚手架(预先定义好的目录结构及基础代码,咱们在创建Maven项目的时可以选择创建一个骨架项目,这个骨架项目就是脚手架),用于快速生成一个vue项目模板 主 ...
- 11、gitlab和Jenkins整合(1)
1.在jenkins上安装git: 因为jenkins需要在gitlab上拉取代码: 具体的git安装,参考"4.git和gitlab的配置--4.2.git编译安装:": 2.在 ...
- 关于tinymce的一些记事
之前能看的懂一部分英文,但是总是没有全局观,以至于我之前使用tinymce一直都有一些疑问:那就是为什么我在tinymce初始化中添加了比如字体,字体大小等设置按钮,但是为什么在前 台没有办法现实出来 ...