题意:

有N个人,有限对的人可以在一起工作,问最多能有多少对.

分析:

任意图的最大匹配

// File MAXName: 1099.cpp
// Author: Zlbing
// Created Time: 2013/8/31 14:37:38 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
#define MAXN 250
#define SET(a,b) memset(a,b,sizeof(a))
deque<int> Q;
//g[i][j]存放关系图:i,j是否有边,match[i]存放i所匹配的点
//建图开始初始化g
//最终匹配方案为match
//复杂度O(n^3)
//点是从1到n的
bool g[MAXN][MAXN],inque[MAXN],inblossom[MAXN],inpath[MAXN];
int match[MAXN],pre[MAXN],base[MAXN]; //找公共祖先
int findancestor(int u,int v)
{
memset(inpath,false,sizeof(inpath));
while()
{
u=base[u];
inpath[u]=true;
if(match[u]==-)break;
u=pre[match[u]];
}
while()
{
v=base[v];
if(inpath[v])return v;
v=pre[match[v]];
}
} //压缩花
void reset(int u,int anc)
{
while(u!=anc)
{
int v=match[u];
inblossom[base[u]]=;
inblossom[base[v]]=;
v=pre[v];
if(base[v]!=anc)pre[v]=match[u];
u=v;
}
} void contract(int u,int v,int n)
{
int anc=findancestor(u,v);
SET(inblossom,);
reset(u,anc);reset(v,anc);
if(base[u]!=anc)pre[u]=v;
if(base[v]!=anc)pre[v]=u;
for(int i=;i<=n;i++)
if(inblossom[base[i]])
{
base[i]=anc;
if(!inque[i])
{
Q.push_back(i);
inque[i]=;
}
}
} bool bfs(int S,int n)
{
for(int i=;i<=n;i++)pre[i]=-,inque[i]=,base[i]=i;
Q.clear();Q.push_back(S);inque[S]=;
while(!Q.empty())
{
int u=Q.front();Q.pop_front();
for(int v=;v<=n;v++)
{
if(g[u][v]&&base[v]!=base[u]&&match[u]!=v)
{
if(v==S||(match[v]!=-&&pre[match[v]]!=-))contract(u,v,n);
else if(pre[v]==-)
{
pre[v]=u;
if(match[v]!=-)Q.push_back(match[v]),inque[match[v]]=;
else
{
u=v;
while(u!=-)
{
v=pre[u];
int w=match[v];
match[u]=v;
match[v]=u;
u=w;
}
return true;
}
}
}
}
}
return false;
} int solve(int n)
{
SET(match,-);
int ans=;
for(int i=;i<=n;i++)
if(match[i]==-&&dfs(i,n))
ans++;
return ans;
} int main()
{
int n;
while(~scanf("%d",&n))
{
int a,b;
while(~scanf("%d%d",&a,&b))
{
g[a][b]=g[b][a]=;
}
int ans=solve(n);
printf("%d\n",ans*);
for(int i=;i<=n;i++)
{
if(match[i]!=-)
{
printf("%d %d\n",i,match[i]);
match[match[i]]=-;
match[i]=-;
}
}
}
return ;
}

ural-1099-Work Scheduling(裸带花树)的更多相关文章

  1. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  2. URAL 1099 Work scheduling 一般图的最大匹配 带花树算法(模板)

    R - Work scheduling Time Limit:500MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  3. URAL 1099 Work Scheduling (一般图最大匹配) 模板题【带花树】

    <题目链接> <转载于 >>>  > 题目大意: 给出n个士兵,再给出多组士兵之间两两可以匹配的关系.已知某个士兵最多只能与一个士兵匹配.求最多能够有多少对匹 ...

  4. Ural 1099 Work Scheduling

    http://acm.timus.ru/problem.aspx?space=1&num=1099 题意:有n个人,很多对合作关系,每个人只能和一个人合作,求最多能选出多少人. 一般图匹配 # ...

  5. URAL1099. Work Scheduling(一般图匹配带花树开花算法)

    1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...

  6. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

  7. [转]带花树,Edmonds's matching algorithm,一般图最大匹配

    看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...

  8. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  9. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

随机推荐

  1. Stream类

    为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...

  2. LDAP7卸载

    3 Uninstalling Directory Server Enterprise Edition This chapter provides instructions for uninstalli ...

  3. Tomcat-java.lang.IllegalArgumentException: Document base F:apps does not exist or is not a readable

    启动Tomcat的时候,报错:java.lang.IllegalArgumentException: Document base F:apps does not exist or is not a r ...

  4. OpenCart 之registry功用

    1. “Registry”设计模式 在OpenCart中,Registry是整个系统的信息中枢. Registry是一个单例(Singleton),在index.php起始页面中, 首先作为构造函数参 ...

  5. ssh配置事务

    http://blog.csdn.net/jianxin1009/article/details/9202907(不错)

  6. [转]单例模式与静态变量在PHP中

    在PHP中,没有普遍意义上的静态变量.与Java.C++不同,PHP中的静态变量的存活周期仅仅是每次PHP的会话周期,所以注定了不会有Java或者C++那种静态变量. 所以,在PHP中,静态变量的存在 ...

  7. hdoj 1892(二维树状数组)

    Problem H Time Limit : 5000/3000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Sub ...

  8. Dev gridview 调整字体大小

    //调整表头字体大小 this.gridView1.Appearance.HeaderPanel.Font = new Font("Tahoma", 20, FontStyle.R ...

  9. 翻译-让ng的$http服务与jQuerr.ajax()一样易用

    Make AngularJS $http service behave like jQuery.ajax() 让ng的$http服务与jQuerr.ajax()一样易用 作者zeke There is ...

  10. POJ2524-宗教问题-并查集-ACM

    太难的搞不过,只能来写简单的了 POJ2524 无所不在的宗教 世界上宗教何其多.假设你对自己学校的学生总共有多少种宗教信仰很感兴趣.学校有n个学生,但是你不能直接问学生的信仰,不然他会感到很不舒服的 ...