【USACO 1.5.4】跳棋的挑战
【问题描述】
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子,如下例,就是一种正确的布局。
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是跳棋放置的一个解。请写一个程序找出所有跳棋放置的解,并把它们以上面的序列方法输出。解按字典顺序排列,请输出前3个解,最后一行是解的总个数。
【输入格式】
一个数字N (6 <= N <= 14) 表示棋盘是N x N大小的。
【输出格式】
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
【分析】
直接搜索就行了,注意最后两个点打表(大家都会......)。
#include <cstdlib>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
int num,vis[][],order[];
//vis1是横行,2是左下右上
int ans,n;
void work();
void dfs(int lie); int main()
{
//文件操作
freopen("checker.in","r",stdin);
freopen("checker.out","w",stdout);
scanf("%d",&n);
if(n==)
{
printf("1 3 5 2 9 12 10 13 4 6 8 11 7\n");
printf("1 3 5 7 9 11 13 2 4 6 8 10 12\n");
printf("1 3 5 7 12 10 13 6 4 2 8 11 9\n");
printf("73712\n");
return ;
}
if(n==){
printf("1 3 5 7 12 10 13 4 14 9 2 6 8 11\n");
printf("1 3 5 7 13 10 12 14 6 4 2 8 11 9\n");
printf("1 3 5 7 13 10 12 14 8 4 2 9 11 6\n");
printf("365596\n");
return ;
}
num=n;ans=;
work();
printf("%d\n",ans);
return ;
}
void work()
{
memset(vis,,sizeof(vis));
memset(order,,sizeof(order));
dfs();
}
void dfs(int lie)
{
if (lie==(num+))
{
++ans;
if (ans<=)
{
for (int i=;i<=num;i++)
printf("%d ",order[i]);
printf("\n");
}
return;
}
for (int i=;i<=num;i++)
{
if (vis[][i]== && vis[][i+lie]== && vis[][lie-i+num]==)
{
order[lie]=i;
vis[][i]=vis[][i+lie]=vis[][lie-i+num]=;
dfs(lie+);
vis[][i]=vis[][i+lie]=vis[][lie-i+num]=;
order[lie]=;
}
}
}
【USACO 1.5.4】跳棋的挑战的更多相关文章
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- Checker Challenge跳棋的挑战(n皇后问题)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- poj 2431 Expedition 贪心+优先队列 很好很好的一道题!!!
Expedition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10025 Accepted: 2918 Descr ...
- (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO
http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...
- 算法竞赛入门经典+挑战编程+USACO
下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成.打牢基础,厚积薄发. 一.UVaOJ http://uva.onlinej ...
- 3298: [USACO 2011Open]cow checkers
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 65 Solved: 26[Su ...
- BZOJ3298: [USACO 2011Open]cow checkers(佐威夫博弈)
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 195 Solved: 96[S ...
- bzoj 3298: [USACO 2011Open]cow checkers -- 数学
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MB Description 一天,Besssie准备 ...
- [USACO 1.5.4]checker(水题重做——位运算(lowbit的应用))
描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 0 1 2 3 4 5 6 ------- ...
随机推荐
- 3A. Shortest path of the king
给你一个的棋盘, 问:从一个坐标到达另一个坐标需要多少步? 每次移动可以是八个方向. #include <iostream> #include <cmath> #inclu ...
- Construct Binary Tree from Inorder and Postorder Traversal——LeetCode
Given inorder and postorder traversal of a tree, construct the binary tree. 题目大意:给定一个二叉树的中序和后续序列,构建出 ...
- 数学概念——D 期望
D - 期望 Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit Status ...
- Bellman-Bord(贝尔曼-福特)
include const int inf=0x3f3f3f3f; int main() { int m,n; scanf("%d%d",&n,&m); int u ...
- 《Mathematical Olympiad——组合数学》——操作和游戏
这篇文章,我们开始对奥数中有关操作和游戏的问题进行分析和讨论,其实在信息学竞赛中涉及到的一些博弈问题(分析必胜策略)的问题(例如巴什博弈.尼姆博弈),本质上来讲,就是组合数学当中的组合游戏,并不是真正 ...
- SRM 392(1-250pt)
DIV1 250pt 题意:给两个各含有一个*号的字符串s1和s2,可以用一个任意字符串代替*号(注意是串,不是只能用单个字符代替,也可以为用空串代替),问能否将s1和s2变为相同的字符串.如果能输出 ...
- MAVEN 工程打包resources目录外的更多资源文件
首先,来看下MAVENx项目标准的目录结构: 一般情况下,我们用到的资源文件(各种xml,properites,xsd文件等)都放在src/main/resources下面,利用maven打包时,ma ...
- Miller-Rabin质数测试
Miller-Rabin质数测试 本文主要讨论使用Miller-Rabin算法编写素数的判定算法,题目来源于hihocoder. 题目 题目要求 时间限制:10000ms 单点时限:1000ms 内存 ...
- Unity3D NGUI制作进度条
利用GUI可以制作进度条,但是NGUI更加方便 我是用的NGUI3.5.3, 先找到NGUI Slider的预制体,利用自带的UISlider来制作. 主要是利用UISlider的Value来控制进 ...
- 关于Form窗体的StartPosition 属性如何设置的问题
1.让窗体在启动时在指定位置出现 form1.StartPosition Manual CenterScreen WindowsDefaultLocation (default) WindowsDef ...