Description

汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。

对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤数。

Input

输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。

Output

只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。

Sample Input

3
AB BC CA BA CB AC

Sample Output

7
 
开始看这道题时,我一点感觉也没有。后来我也是看了题解才做出来的。
f[i][j]表示从i号杆子移动j个铁片到最优柱子的最少步数,g[i][j]表示从i号杆子移动j个铁皮的最优柱子的编号。
然后就是汉诺塔的经典转移了(以下为了方便叙述,i表示杆上的铁片个数,用x表示原杆,y=g[x][i-1],z表示另外一根杆);
从x移动i个铁片,最优方案是先把x上的i-1个铁片移动到y,再移动最后一个到z,最后再从y上将剩下的i-1个铁片移动回来。
但是由于本题的最优方案是按照优先级来的,所以我们要分类讨论一下。
1.若g[y][i-1]=z,我们就可以直接将y上的i-1个铁片移动到z上:f[x][i]=f[x][i-1]+1+f[y][i-1],g[x][i]=z。
2.若g[y][i-1]=x,我们就得将y上的i-1个铁片移动到x上,但是由于不能移动相同的盘子,所以只能将z上的一个移上y,然后再将x上的i-1个移动到y上来。
方程:f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[xi-1],g[x][i]=y。
初始化:f[i][1]=1,g[i][1]=在i柱子上移动最优的那一个。

 #include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 40
int n,g[][maxn];
long long f[][maxn]; int main()
{
freopen("1019.in","r",stdin);
freopen("1019.out","w",stdout);
scanf("%d\n",&n);
char opt[][]; int i,x,y,z;
for (i = ;i <= ;++i) scanf("%s",opt[i]);
for (i = ;i <= ;++i)
if (!g[opt[i][]-'A'+][])
g[opt[i][]-'A'+][] = opt[i][]-'A'+,f[opt[i][]-'A'+][] = ;
for (i = ;i <= n;++i)
for (x = ;x <= ;++x)
{
y = g[x][i-]; z = -x-y;
f[x][i] += f[x][i-] + ;
if (g[y][i-] == z)
{
f[x][i] += f[y][i-];
g[x][i] = z;
}
else
{
f[x][i] += f[y][i-]++f[x][i-];
g[x][i] = y;
}
}
printf("%lld",f[][n]);
fclose(stdin); fclose(stdout);
return ;
}

参考BY:http://blog.sina.com.cn/s/blog_76f6777d0101b8l1.html

BZOJ 1019 汉诺塔的更多相关文章

  1. [BZOJ]1019 汉诺塔(SHOI2008)

    找规律成功次数++. Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. ...

  2. BZOJ_1019_[SHOI2008]_汉诺塔_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...

  3. 【BZOJ】【1019】【SHOI2008】汉诺塔

    递推/DP 类似普通汉诺塔的一个递推(模拟?$10^{18}$没法模拟吧…… 题解:http://blog.csdn.net/regina8023/article/details/43016813 因 ...

  4. BZOJ 1019: [SHOI2008]汉诺塔

    Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...

  5. 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 559  Solved: 341[Submit][Status] ...

  6. 【BZOJ】1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...

  7. BZOJ 1019: [SHOI2008]汉诺塔( dp )

    dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...

  8. 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)

    1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...

  9. 【BZOJ 1019】 [SHOI2008]汉诺塔

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 [题意] [题解] 这个题解讲得很清楚了 http://blog.sina.co ...

随机推荐

  1. javascript 匿名函数的理解,js括号中括function 如(function(){})

    代码如下: (function(){  //这里忽略jQuery所有实现  })();  (function(){ //这里忽略jQuery所有实现 })(); 半年前初次接触jQuery的时候,我也 ...

  2. Codeforces Beta Round #51 D. Beautiful numbers

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  3. Kruskal算法模拟讲解

    Kruskal 算法是一个求最小生成树的算法,即求最小的开销等 算法可以这样,要求得最小生成树,那么n个节点只能包括n-1条边 所以我们应该转换为寻找这最短的n-1条边,因此,可以先对所有的 边进行从 ...

  4. JWS-webservice 与Axis2-webservice的高速实现

    在详细介绍这两种框架下的webservice之前,先跟大家交流一下SOA认识,也就是面向服务的体系结构.SOA所要解决的主要问题是在现有基础环境的前提下,通过对现有应用程序和基础结构进行又一次的组合以 ...

  5. Innodb_buffer_pool_pages_dirty [一个故事@MySQL DBA]MYSQL

    http://www.orczhou.com/index.php/2010/12/more-about-mysql-innodb-shutdown/http://www.orczhou.com/ind ...

  6. Java语言基础(九)

    Java语言基础(九) 一.自增运算(++) 自减运算(--) i++ 就是将i+1再赋给 i i-- 是将i-1再赋给 i 对变量i,j来说,i++ 或++i 这里没什么区别,都是将i的值加1后,再 ...

  7. block代码块介绍

    关于block的简单介绍 什么是block? Block是C语言的一个语法特性,同时也是C语言的运行时特性,它很像C中的函数指针,因为你可以像使用函数指针一样的去使用block对象:它也很像C++中的 ...

  8. try{}catch(){}//根据异常信息使用不同的方法要怎么实现

    try{ }catch(Exception e){ if(e.getMessage().contains("123456798")) //使用e.getMessage().cont ...

  9. Wpf 鼠标拖动元素实例

    1.Wpf中鼠标捕获和释放 //以矩形为例 //创建鼠标捕获 Mouse.Capture(rectOne); //释放鼠标捕获 rectOne.ReleaseMouseCapture(); 2.Wpf ...

  10. Eclipse从数据库逆向生成Hibernate带注解的实体类

    http://www.2cto.com/database/201501/372023.html