(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$. In other words, there exists a unitary $Q$ such that $Q^*A_\al Q$ is upper triangular for all $\al$.

(2). Let $\sed{A_\al}$ be a family of mutually commuting normal operators. Then, there exists a unitary $Q$ such that $Q^*A_\al Q$ is diagonal for all $\al$.

Solution.

(1). We may assume $A_\al$ is not the multiplier of the identity operator (otherwise, we could just delete it). We prove by induction on the dimension $n$ of the vector space $\scrH$ we consider. If $n=1$, then it is obvious true. Suppose the conclusion holds for vector spaces with dimension $\leq n-1$. To prove the statements for the case $\dim \scrH=n$, we need only to prove that there exists an one-dimensional subspace that is $A_\al$-invariant for each $\al$. In fact, $$\beex \bea &\quad \sex{\ba{cc} 0&b\\ 0&B \ea}\sex{\ba{cc} 0&c\\ 0&C \ea}=\sex{\ba{cc} 0&c\\ 0&C \ea}\sex{\ba{cc} 0&b\\ 0&B \ea}\\ &\ra \sex{\ba{cc} 0&bC\\ 0&BC \ea}=\sex{\ba{cc} 0&cB\\ 0&CB \ea}\\ &\ra BC=CB. \eea \eeex$$ Fix a $\beta$, suppose $\lm$ is an eigenvalue of $A_\beta$, then $$\bex W=\sed{x\in\scrH;\ A_\beta x=\lm x} \eex$$ is $A_\al$-invariant. Indeed, $$\bex A_\beta A_\al x=A_\al A_\beta x=\lm A_\al x. \eex$$ Thus, $W\neq \scrH$ (by the fact that $A_\beta$ is not the multiplier of the identity operator), and $$\bex \dim W<\dim \scrH. \eex$$ Also, $A_\al$ may be viewed as a commuting operator on $W$, and the induction hypothesis may be invoked to deduce that there exists a orthonomal basis $x_1,\cdots,x_k$ of $W$ such that $$\bex A_\al(x_1,\cdots,x_k)=(x_1,\cdots,x_k)\sex{\ba{ccc} *&&*\\ &\ddots&\\ 0&&* \ea}. \eex$$ The subspace spanned by $x_1$ is then one-dimensional, and is $A_\al$-invariant for each $\al$.

(2). By (1), $\exists$ unitary $Q$ such that $A=QU_\al Q^*$ for some upper triangular $U_\al$. Since $A_\al$ is normal, we have $U_\al^*U_\al=U_\al U_\al^*$. By comparing the diagonal entries, we see readily that $U_\al$ is diagonal, as desired.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. HPDL380G8平台11.2.0.3 RAC实施手册

    HPDL380G8平台11.2.0.3 RAC实施手册   1 前言 此文档详细描述了Oracle 11gR2 数据库在HPDL380G上的安装RAC的检查及安装步骤.文档中#表示root用户执行,$ ...

  2. windows 安装 setuptools

    在python的网站上 : https://pypi.python.org/pypi/setuptools/ 查找windows,显不如下: 点击 ez_setup.py进入, 并将内容复制下来, 保 ...

  3. php结合jquery异步上传图片(ajaxSubmit)

    php结合jquery异步上传图片(ajaxSubmit),以下为提交页面代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi ...

  4. windows 系统下,小数据量Oracle用户物理备份

    环境:windows Server 2003 oracle 10g,系统间备份 目标系统创建共享文件,原系统挂载共享目录 写批处理脚本,用任务计划定时调用 Rem * 由于系统实时性要求不是很高,数据 ...

  5. E8.Net工作流平台之中国特色

     特色之一领导排名有先后 领导排名是有潜规则的,不论是在企业通讯录中,还是企业员工目录中,不管在流程执行过程中,还是存档数据中,当前领导的排名一定要按潜规则展示,不能随便罗列.E8.Net工作流解决了 ...

  6. Event Aggregator

    /** * Created with JetBrains WebStorm. * User: 宇乔 * Date: 13-8-2 * Time: 下午3:01 * To change this tem ...

  7. js实现方法的链式调用

    假如这里有三个方法:person.unmerried();person.process();person.married();在jQuery中通常的写法是:person.unmerried().pro ...

  8. java随机生成字符串并排序

    package com.Imooc; import java.util.ArrayList; import java.util.Collections; import java.util.List; ...

  9. single page

    http://msdn.microsoft.com/zh-cn/magazine/cc507641.aspx#S7 http://blog.nodejitsu.com/scaling-isomorph ...

  10. Maven内置变量

    1.Maven内置变量说明: ${basedir} 项目根目录 ${project.build.directory} 构建目录,缺省为target ${project.build.outputDire ...