(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$. In other words, there exists a unitary $Q$ such that $Q^*A_\al Q$ is upper triangular for all $\al$.

(2). Let $\sed{A_\al}$ be a family of mutually commuting normal operators. Then, there exists a unitary $Q$ such that $Q^*A_\al Q$ is diagonal for all $\al$.

Solution.

(1). We may assume $A_\al$ is not the multiplier of the identity operator (otherwise, we could just delete it). We prove by induction on the dimension $n$ of the vector space $\scrH$ we consider. If $n=1$, then it is obvious true. Suppose the conclusion holds for vector spaces with dimension $\leq n-1$. To prove the statements for the case $\dim \scrH=n$, we need only to prove that there exists an one-dimensional subspace that is $A_\al$-invariant for each $\al$. In fact, $$\beex \bea &\quad \sex{\ba{cc} 0&b\\ 0&B \ea}\sex{\ba{cc} 0&c\\ 0&C \ea}=\sex{\ba{cc} 0&c\\ 0&C \ea}\sex{\ba{cc} 0&b\\ 0&B \ea}\\ &\ra \sex{\ba{cc} 0&bC\\ 0&BC \ea}=\sex{\ba{cc} 0&cB\\ 0&CB \ea}\\ &\ra BC=CB. \eea \eeex$$ Fix a $\beta$, suppose $\lm$ is an eigenvalue of $A_\beta$, then $$\bex W=\sed{x\in\scrH;\ A_\beta x=\lm x} \eex$$ is $A_\al$-invariant. Indeed, $$\bex A_\beta A_\al x=A_\al A_\beta x=\lm A_\al x. \eex$$ Thus, $W\neq \scrH$ (by the fact that $A_\beta$ is not the multiplier of the identity operator), and $$\bex \dim W<\dim \scrH. \eex$$ Also, $A_\al$ may be viewed as a commuting operator on $W$, and the induction hypothesis may be invoked to deduce that there exists a orthonomal basis $x_1,\cdots,x_k$ of $W$ such that $$\bex A_\al(x_1,\cdots,x_k)=(x_1,\cdots,x_k)\sex{\ba{ccc} *&&*\\ &\ddots&\\ 0&&* \ea}. \eex$$ The subspace spanned by $x_1$ is then one-dimensional, and is $A_\al$-invariant for each $\al$.

(2). By (1), $\exists$ unitary $Q$ such that $A=QU_\al Q^*$ for some upper triangular $U_\al$. Since $A_\al$ is normal, we have $U_\al^*U_\al=U_\al U_\al^*$. By comparing the diagonal entries, we see readily that $U_\al$ is diagonal, as desired.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Web前端新人笔记之CSS结构和层叠

    上一篇文章介绍了如何利用CSS选择器为元素应用各种丰富的样式,每个合法的文档都会生成一个结构树,了解这一点,就能根据元素的祖先.属性.兄弟等元素穿件选择器选择元素. 本篇文章将讨论3中机制之间的关系: ...

  2. VB winform自动更新 笔记

    看网上各种自动更新方法,最后自己找了个比较简单的,在此做个笔记. 服务器上的共享盘里存放生成的可执行文件和XML格式的配置: <?xml version="1.0" enco ...

  3. 谈谈我对OAuth的理解

    自己的理解是,OAuth是一种授权标准.   用于为除了用户之外的第三方应用授权,   并且在授权过程中,第三方应用不会接触到用户的任何信息,   授权完成后,第三方应用可访问用户授权范围内的信息. ...

  4. 判断浏览器是否支持某个css3属性的javascript方法

    判断浏览器是否支持css3某个属性的方法: /** * 判断浏览器是否支持某一个CSS3属性 * @param {String} 属性名称 * @return {Boolean} true/false ...

  5. iOS局部刷新

    iOS: TableView如何刷新指定的cell 或section //一个section刷新 NSIndexSet *indexSet=[[NSIndexSet alloc]initWithInd ...

  6. iOS极光推送集成步骤

    1.下载SDK,导入Xcode 2.在苹果开发者中心建立AppId与bundleID进行关联,注意勾选推送功能 3.在苹果开发者中心建立推送证书 4.在极光后台建立应用且上传推送证书 5.建立描述文件 ...

  7. MVC之重定向

    MVC的重定向主要通过RedirectResult和RedirectToRouteResult实现.很显然,这两个对象都是MVC返回对象ActionResult的两个继承,具体原理不赘述. 这两个方法 ...

  8. Delphi 文字跑马灯

    //跑马灯 procedure Tfr_Main.tme_TitleTimer(Sender: TObject); var strTrim: Widestring; begin strTrim := ...

  9. SQL注入原理一

    SQL注入的成因 所谓SQL注入,就是通过把SQL命令插入到Web表单提交.页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.根据所注入对象的类型不同,SQL注入分为三类: (1) 变量是 ...

  10. poj 1830 开关问题

    开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...