Torch vs Theano

Recently we took a look at Torch 7 and found its data ingestion facilities less than impressive. Torch’s biggest competitor seems to be Theano, a popular deep-learning framework for Python.

It seems that these two have been having “who is faster” competition going for a few years now. It’s been documented in the following papers:

  1. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, Y. Bengio - Theano: a CPU and GPU Math Expression Compiler PDF

  2. Ronan Collobert, Koray Kavukcuoglu, Clement Farabet - Torch7: A Matlab-like Environment for Machine Learning PDF

  3. Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, Yoshua Bengio - Theano: new features and speed improvements arxiv


A figure from the Torch7 paper [2]. Torch - red, Theano - green. Higher is better.

And a quote from [3]:

Bergstra et al.(2010) showed that Theano was faster than many other tools available at the time, including Torch5. The following year, Collobert et al.(2011) showed that Torch7 was faster than Theano on the same benchmarks.

The results in the last paper are mixed, if you’re wondering.

The latest act in this friendly competition, which can be seen as one between Bengio’s and LeCun’s groups, appears to be about FFT convolutions, first available in Theano and recently open-sourced by Facebook in Torch.

As a side note, the press really jumped at this second event with headlines about turbo-charging deep learning and the like. Probably the allure of Facebook and deep learning in the same sentence.

Let’s look at convnet benchmarks by Soumith Chintala. He is a Facebook/Torch guy and yet the Theano’s convolution layer is reported to be the fastest at the time of writing. Waiting for those fbfft results.

Anyway, speed isn’t everything and there’s more to life than FFT convolutions. From a developer’s perspective minor differences in speed are less important than other factors, like ease of use. Which leads us to what Soumith had to say about Torch, according to VentureBeat:

It’s like building some kind of electronic contraption or, like, a Lego set. You just can plug in and plug out all these blocks that have different dynamics and that have complex algorithms within them.

At the same time Torch is actually not extremely difficult to learn — unlike, say, the Theano library.

We’ve made it incredibly easy to use. We introduce someone to Torch, and they start churning out research really fast.

Well, you already know our opinion about the “incredibly easy” bit. Torch is not really a Matlab-like environment. Matlab, with all its shortcomings, is a very well polished piece of software with examplary documentation. Torch, on the other hand, is rather rough around the edges.

Besides the language gap, that’s one of the reasons that you don’t see that much Torch usage apart from Facebook and DeepMind. At the same time libraries using Theano have been springing up like mushrooms after a rain (you might want to take a look at Sander Dieleman’s Lasagne and at blocks). It is hard to beat the familiar and rich Python ecosystem.

Theano tutorials

P.S. What about Caffe?

Caffe is a fine and very popular piece of software. How does it compare with Torch and Theano? Here’s sieisteinmodel’s answer from Reddit:

Caffe has a pretty different target. More mass market, for people who want to use deep learning for applications. Torch and Theano are more tailored towards people who want to use it for research on DL itself.

Torch vs Theano的更多相关文章

  1. mxnet,theano与torch的简单比较

    这篇文章我想来比较一下Theano和mxnet,Torch(Torch基本没用过,所以只能说一些直观的感觉).我主要从以下几个方面来计较它们: 1.学习框架的成本,接口设计等易用性方面. 三个框架的学 ...

  2. Summary on deep learning framework --- Theano && Lasagne

     Summary on deep learning framework --- Theano && Lasagne 2017-03-23 1. theano.function outp ...

  3. 普通程序员如何转向AI方向

    眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平 ...

  4. AI方向

    普通程序员如何转向AI方向   眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 ...

  5. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  6. 学习Data Science/Deep Learning的一些材料

    原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...

  7. 百度Paddle会和Python一样,成为最流行的深度学习引擎吗?

    PaddlePaddle会和Python一样流行吗? 深度学习引擎最近经历了开源热.2013年Caffe开源,很快成为了深度学习在图像处理中的主要框架,但那时候的开源框架还不多.随着越来越多的开发者开 ...

  8. Google研究员Ilya Sutskever:成功训练LDNN的13点建议

    Google研究员Ilya Sutskever:成功训练LDNN的13点建议 摘要:本文由Ilya Sutskever(Google研究员.深度学习泰斗Geoffrey Hinton的学生.DNNre ...

  9. Popular Deep Learning Tools – a review

    Popular Deep Learning Tools – a review Deep Learning is the hottest trend now in AI and Machine Lear ...

随机推荐

  1. Github + Hexo 搭建博客

    服务加速 brew 加速 http://blog.suconghou.cn/post/homebrew-speedup/ github加速 http://www.selfrebuild.net/201 ...

  2. Eclipse启动Tomcat访问不了首页

    Eclipse开发web项目与myEclipse不同: 启动服务器后访问 http:localhost:8080 找不到服务器 想要访问Tomcat首页只需修改Tomcat配置 进入Eclipse双击 ...

  3. RPC框架之Thrift

    目前流行的服务调用方式有很多种,例如基于SOAP消息格式的 Web Service,基于 JSON 消息格式的 RESTful 服务等.其中所用到的数据传输方式包括 XML,JSON 等,然而 XML ...

  4. Mybatis特殊字符处理,Mybatis中xml文件特殊字符的处理

    Mybatis特殊字符处理,Mybatis中xml文件特殊字符的处理 >>>>>>>>>>>>>>>>& ...

  5. 设置repeater每行多少个的方法

    前台代码: <asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">< ...

  6. 基于C#的IBM消息队列操作客户端

    背景: 做XX项目需要把交易的消息推送给YY系统,技术选型MQ 另:选用MQ原因是为了防止YY系统宕机,无法接受收消息 实现 1.安装IBM WebSphere MQ客户端 2.引用amqmdnet. ...

  7. 如何在Angular2中使用jquery

    首先在index.html中引入jquery文件 <script src="http://cdn.bootcss.com/jquery/2.1.3/jquery.js"> ...

  8. webstorm的默认project编码为系统编码GBK.

    使用新的IDE,而不会设置,会给你带来灾难. 如下为我是用webstorm时遇到的文件编码问题. 纳闷很久,终于发现是IDE的设置问题. 参考

  9. 24种设计模式--状态模式【State Pattern】

    现在城市发展很快,百万级人口的城市一堆一堆的,那其中有两个东西的发明在城市的发展中起到非常重要的作用:一个是汽车,一个呢是...,猜猜看,是什么?是电梯!汽车让城市可以横向扩展,电梯让城市可以纵向延伸 ...

  10. Swift小功能点积累

    label字符加删除线 let label = UILabel(frame: CGRectMake(, , , )) let attr = NSMutableAttributedString(&quo ...