Description

Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recurrence relation:

F1 = 1, F2 = 2, Fi = Fi - 1 + Fi - 2 (i > 2).

We'll define a new number sequence Ai(k) by the formula:

Ai(k) = Fi × ik (i ≥ 1).

In this problem, your task is to calculate the following sum: A1(k) + A2(k) + ... + An(k). The answer can be very large, so print it modulo1000000007 (109 + 7).

Input

The first line contains two space-separated integers nk (1 ≤ n ≤ 1017; 1 ≤ k ≤ 40).

Output

Print a single integer — the sum of the first n elements of the sequence Ai(k) modulo 1000000007 (109 + 7).

Sample Input

Input
1 1
Output
1
Input
4 1
Output
34
Input
5 2
Output
316
Input
7 4
Output
73825
 
【分析】

  哈哈照着上一题的方法我就弄出来了~~
  应该是形如 x^k的形式,x很大,k较小的时候可以用二项式定理展开,求递推式然后矩阵加速。。
  
  就这样,qpow n次就好啦~ 代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Mod 1000000007
#define Maxn 110
#define LL long long struct node
{
LL a[Maxn][Maxn];
}t[]; LL c[Maxn][Maxn];
LL n,k; void init()
{
memset(c,,sizeof(c));
for(LL i=;i<=;i++) c[i][]=;
for(LL i=;i<=;i++)
for(LL j=;j<=;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%Mod;
} void get_m()
{
for(LL i=k+;i<=*k+;i++)
{
for(LL j=;j<=i-k-;j++) t[].a[i][j]=c[i-k-][j];
for(LL j=i+;j<=*k+;j++) t[].a[i][j]=;
}
for(LL i=;i<=k;i++)
{
for(LL j=;j<=i;j++) t[].a[i][j]=t[].a[i][j+k+]=c[i][j];
for(LL j=i+;j<=k;j++) t[].a[i][j]=t[].a[i][j+k+]=;
t[].a[i][*k+]=;
}
for(LL i=;i<=*k+;i++) t[].a[*k+][i]=;
t[].a[*k+][*k+]=t[].a[*k+][k]=;
} void get_un()
{
memset(t[].a,,sizeof(t[].a));
for(LL i=;i<=*k+;i++) t[].a[i][i]=;
} void mul(LL x,LL y,LL z)
{
for(LL i=;i<=*k+;i++)
for(LL j=;j<=*k+;j++)
{
t[].a[i][j]=;
for(LL l=;l<=*k+;l++)
t[].a[i][j]=(t[].a[i][j]+t[y].a[i][l]*t[z].a[l][j])%Mod;
}
t[x]=t[];
} void qpow(LL b)
{
get_un();
while(b)
{
if(b&) mul(,,);
mul(,,);
b>>=;
}
} int main()
{
init();
scanf("%lld%lld",&n,&k);
get_m();
qpow(n);
LL ans=;
for(LL i=;i<*k+;i++) ans=(ans+t[].a[*k+][i])%Mod;
printf("%lld\n",ans);
return ;
}

a


2016-09-26 16:11:26

 

【 CodeForces - 392C】 Yet Another Number Sequence (二项式展开+矩阵加速)的更多相关文章

  1. Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)

    题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...

  2. CodeForces 392C Yet Another Number Sequence 矩阵快速幂

    题意: \(F_n\)为斐波那契数列,\(F_1=1,F_2=2\). 给定一个\(k\),定义数列\(A_i=F_i \cdot i^k\). 求\(A_1+A_2+ \cdots + A_n\). ...

  3. 【HDU 3483】 A Very Simple Problem (二项式展开+矩阵加速)

    A Very Simple Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  4. CodeForces - 393E Yet Another Number Sequence

    Discription Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  5. hdu3483之二项式展开+矩阵快速幂

    A Very Simple Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  6. Number Sequence(快速幂矩阵)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...

  7. 【距离GDOI:128天】【POJ2778】DNA Sequence(AC自动机+矩阵加速)

    已经128天了?怎么觉得上次倒计时150天的日子还很近啊 ....好吧为了把AC自动机搞透我也是蛮拼的..把1030和这道题对比了无数遍...最终结论是...无视时间复杂度,1030可以用这种写法解. ...

  8. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  9. HDU 1005 Number Sequence

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

随机推荐

  1. 【腾讯Bugly干货分享】总结一个技术总监的教训和经验

    本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:http://mp.weixin.qq.com/s/Ry-G0Nikh6m-h3ZVC2cLyQ 导语 20 ...

  2. 我给自己的Sass+Compass,在Windows下写个bat,快速cd到我的sass目录

    在Windows下,我总是要打开Ruby的cmd来进行Sass,其中要写好多cd,次数多了,自己的多敲,的确能记得更牢靠,但是无形中会浪费自己的一点点敲cd命令的时间,所以我想到自己在windows下 ...

  3. 用 SQL 计算时间差值

    ;WITH res1 AS ( SELECT * FROM ( SELECT ROW_NUMBER() OVER (PARTITION BY F2 ORDER BY F1) AS rn,F1,F2 F ...

  4. mssql死锁问题

    在网上查看了很多死锁与阻塞的资料,为什么会出现死锁或者阻塞? 阻塞在大数据量的数据库中经常出现,在我现在的其中一个项目出现的频率很高,根据网上查到死锁跟阻塞的资料,当时分析出来,主要是多台设备同时调用 ...

  5. DDX_Text (MFC)

    DDX_Text (MFC) 描述:该DDX_Text功能管理int的转移,UINT,long,DWORD,CString,float, 或 double编辑控件之间的数据在对话框中,表单视图或控制视 ...

  6. oracle输出多行多列数据

    --方法一  匿名块中直接 dbms_output输出declare  v_sql    varchar2(200);  v_cursor sys_refcursor;  type v_type is ...

  7. iOS常见的设计模式

    ios开发学习中,经常弄不清楚ios的开发模式,今天我们就来进行简单的总结和探讨~ (一)代理模式 应用场景:当一个类的某些功能需要由别的类来实现,但是又不确定具体会是哪个类实现.优势:解耦合敏捷原则 ...

  8. ios专题 -内存管理 研究

    [原创]http://www.cnblogs.com/luoguoqiang1985 ARC [新的规则] 1. you cannot explicitly invoke dealloc, or im ...

  9. 记一次ftp服务器错误 centOS 6.4 vsftpd 500 illegal port command

    这个错误是因为是主动模式的,应该改为被动模式 以下是操作过程: iptables中加 -A INPUT -p tcp -m state --state NEW -m tcp --dport 10221 ...

  10. Codevs 1191 数轴染色

    1191 数轴染色 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在一条数轴上有N个点,分别是1-N.一开始所有的点都被染成黑色. ...