之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在《概率论基础教程》中一系列的推导中发挥着很重要的作用。

回想先前关于二重积分的几何含义,求解一个曲顶圆柱的体积,我们用如下的符号进行定义:

现在我们通过另外一条路径,再次得到几何体的体积,便可以建立等式,那么对于一般的二重积分,我们就找到了计算方法。

看这样一个图:

落在x-O-y上的面积就是被积区域D,几何体的顶部z=f(x,y)就是被积函数,为了求解这个几何体的体积,我们采取先求侧面面积(平行于y-O-z面),然后对基于所求结果再对x进行积分,便得到了几何体的体积。

侧面积A(x0):

简单的一维积分求解曲边梯形。

随后基于这个侧面积的结果再对x积分,显然就得到了体积,等式如下。

那么我们就将重积分化为了累次积分,在上述形式中,最后两个等号后边的形式都表示先对y积分然后对x积分。

需要注意,按照这种极限法表示几何的体积,对它的底面是有限制的,它分为X型积分区域和Y型积分区域,例如在上面的图中,是一个X型积分区域。

Y型积分区域:

X型积分区域:

那么很显然,如果对于某个积分区域既满足X型又满足Y型,那么我们有如下的等式成立:

这个定理其实就是傅比尼定理增强形式,它是二重积分算法的基础,同时也是等价交换积分次序的基础。

这两种情况其实就是呼应着上面的X型和Y型积分区域,当某种情况既是X型积分区域又是Y型积分区域,那么便可以根据积分计算的便捷性进行积分次序的交换,而如果既不是X型也不是Y型,则考虑通过分割法将被积区域R变为X型与Y型的加和。其正确性结合上文关于二重积分几何意义的算法过程,是不言自明的。

《University Calculus》-chaper13-多重积分-二重积分的计算的更多相关文章

  1. 《University Calculus》-chaper13-多重积分-二重积分的引入

    这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...

  2. 《University Calculus》-chape12-偏导数-基本概念

    偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...

  3. 《University Calculus》-chaper13-向量场中的积分-线积分

    线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...

  4. 《University Calculus》-chaper13-多重积分-三重积分的引入

    承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...

  5. 《University Calculus》-chape6-定积分的应用-求体积

    定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...

  6. 《University Calculus》-chape10-向量与空间几何学-向量夹角

    点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? ...

  7. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  8. 《University Calculus》-chape6-定积分的应用-平面曲线长度

    平面曲线的长度: 积分的重要作用体现在处理曲线和曲面. 在这里我们讨论平面中一条用参数形式表达的曲线:x=f(t),y=g(t),a≤t≤b. 如图. y=f(x)形式的弧长计算: 之前我们讨论过平面 ...

  9. 《University Calculus》-chape5-积分法-积分的定义

    这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...

随机推荐

  1. iOS中打印系统详细日志

    Q:如何打印当前的函数和行号? A:我们可以在打印时使用一些预编译宏作为打印参数,来打印当前的函数和行号.如: 1 NSLog(@"%s:%d obj=%@", __func__, ...

  2. sublime 正则搜索日语字符

    sublime 正则搜索日语字符 [\x{3041}-\x{3096}\x{30A0}-\x{30FF}\x{3400}-\x{4DB5}\x{4E00}-\x{9FCB}\x{F900}-\x{FA ...

  3. python 计算apache进程占用的内存大小以及占物理内存的比例

      目的:计算所有apache进程占用的内存大小以及占物理内存的比例: 思路:利用系统中/proc/meminfo的现有数据进行统计 1.pidof列出服务对应进程的PID [root@yanglih ...

  4. 学习笔记-记ActiveMQ学习摘录与心得(二)

    上个周末被我玩过去了,罪过罪过,现在又是一个工作日过去啦,居然有些烦躁,估计这几天看的东西有点杂,晚上坐下来把自己首要工作任务总结总结.上篇学习博客讲了ActiveMQ的特性及安装部署,下面先把我以前 ...

  5. [转] CSS3混合模式mix-blend-mode/background-blend-mode简介 ---张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=4819 一.关于混合模 ...

  6. mysql备份sql,脚本

    MySQL 安装位置:/usr/local/mysq 论坛数据库名称为:bbs MySQL root 密码:123456 数据库备份目的地:/var/db_backup/ #! /bin/bash / ...

  7. Android中自定义ListView无法响应OnItemClickListener中的onItemClick方法问题解决方案

    如果你的自定义ListViewItem中有Button或者Checkable的子类控件的话,那么默认focus是交给了子控件,而ListView 的Item能被选中的基础是它能获取Focus,也就是说 ...

  8. OpenCV for c++Builder

    整理日: 20154/6 Borland C++BuilderでOpenCVを使う 確認 Turbo C++ 2007/03 1. ダウンロード&インストール http://sourcefor ...

  9. pragma指令简介

    整理日:2015年3月12日 资源来来自己网络 在编写程序的时候,我们经常要用到#pragma指令来设定编译器的状态或者是指示编译器完成一些特定的动作. 下面介绍了一下该指令的一些常用参数,希望对大家 ...

  10. Codeforces Round #Pi (Div. 2)

    上次比完赛就准备写了, 结果懒癌发作了, 拖到了现在. Problem_A: 题意: 在一条x轴上有n座城市, 每个城市之间的距离就是它们对应坐标的距离, 现在求出每个城市到其他城市的最近距离和最远距 ...