这篇博文主要写Scrapy框架的安装与使用

Scrapy框架安装

命令行进入C:\Anaconda2\Scripts目录,运行:conda install Scrapy

创建Scrapy项目

1)进入打算存储的目录下,执行scrapy startproject 文件名 命令即可创建

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABMgAAAEJCAIAAADuIIzuAAAgAElEQVR4nO3dTa8dR37f8QNoww032nCgF6BN21stCDiYDREEaS0NgQvDgBdc9Y7LeAABA8ToAIMhPEImzqPGSTsC4llYgQlPZiRdidLw8vLpkhJ5SXE0tgNon3fALM5D18O//lXd1X1O9+nvB1qI53RXV1U/3P6d6ofV//2nf/7u1e8unj3/wY8vXgMAAAAA0NHqn//xn169/Pabr78mWAIAAAAAelj943e///bFy6+fPiVYAgAAAAB6WP3+u+9eXrx4+uQJwRIAAAAA0MPqu999d/H8+ZPH5wRLAAAAAEAPq9+9+t3zZ88fP3pMsAQAAAAA9LD63bevnn3z7PHDRwRLAAAAAEAPq1cvv3329TePHjwkWAIAAAAAelh9++LlN0+/fnj/gR4s757e7/3f3hoDAAAAANi/TbB8cHZfD5Y//cuf/5df/M1//5+/VP772V/94ic/+88f/o//9Rc/+Q//8b/9zc/+6hd/8ZN//9O//PneGgMAAAAA2L/Vy4sXXz95mhIsP71z7+mL3yv//fUvf/3T//S3p48v/vzf/de///TeX//y1//m3/6cYImDenXr6mp14/ahqwEAAIBjsEpw6DpaVqvVgwcPQt8+ePBgqAp3CJa/+vWn9x8+Vv776vT+nbv3zh48+vyr09Ozh1+d3v+7v/8HNVjevmGsAO/k//YN78PbN7wJX926ulpdvfXK/ejG7c302+9e3boqLcYKHptpWnbBcsWtibrW0C1tM53Q9okzGuF0mtVZ2+/21kCCJQAAAAYTjWFTC5br6ChmS+WrHjoEyz9+7/of/dG/6PTfH793PRQs1xHOPOG/fcNNcWYsDH20iYLmZ0aUEIKlGPvMYOkVZc+w/sjLkrsPOtbQzT3bXhDaPoxREt2rW1d3ZTo5+vYN+x/b70ZroF81giUAAACGMbtg+ToQIIdNla87BcviD/4wZeTXVPzBH8rBMjFVuDnPn/PVraurG7duXbWzmTXwZwbLqzduuElRDZbeEgMxxRyn7FTDcEdIVRnC+EOFapRrGzxWA7vUBgAAAOhijsHytRcjB0+Vr3sEyytXrrz77rvvvvvulStXzAz5zjvvvP3222nBUo8U5oiXP6U4HmaFJTOrecHy1it3EDIaLEMjoKFpOtVQuHJW7aX2stJQhdzCjYmdC33b+cwvjNLWlW6/vHrrlTVtIK4lBsvgZiBcVNutJua1tzduabWRGu6NUtvrKNBXAAAAWIKZBsvXRpgcI1W+7hosL1++/N57733//ffff//9e++9d/ny5UuXLl25cuWNN974+OOP33///aRgGRlDsoOZN8Bmzb29ztK43tKKWkKwdJNDPFjacwbChPFV5xqGMprbdnvGW+KQ524eaWKxQ/0RWbOiVgw0qxqKxOra9UO3lAnNxHtrl58TayL8S+necMOllanMAgAAgH5WCQ5dx9Z8g+XrbbYcI1W+7hosb968+dFHH7311ltvvfXWRx99dPPmzWvXrj169OjKlSsdg2X6+biWLHfftUXahYvB0o6WicFydeO2egWvWUyXGr42gpKXf+y2y5HNb/BueWKecvrzlX2RrlWe01wnStrfOqOJwS6yvxYqE6x0Uk38NRQqU2v4rhx7Zn0WAAAAHD+CZUi3YPn+++9//PHH69qsr329cuXKtWvXLl269PHHH798+fJHP/rR0MFSTpbbUUAzy1299cqNEYFgaUbL4UcsO9XQaqaXy4Rk6UU3JzC7zyqSbhn1i3Q4qdjvzGBfiQ88Ep9g5NcmPNiZWhOhhEChasPlGkdnAQAAwLGbb7Cc1qWwZrC8fv36D3/4w7fffvvmzZuXL1++fv36Z599tvtWC5ZdHwjqJRhjOMm6SPHGbS2BOMVs88/g91h2q6FQjDuGJ4zAWZFHyb3+xEmjoOKkqcFSXkbKnaR7D5ZaJgwES2IkAADAks00WE7u4T3Xr1//4IMP1g/v+eCDD65fv/7OO+98+OGHb7755mq1WsfOS5cuXbt27d1333377bdDT4VVHlkjkZPljRvWp7dvrFY3bih3JQYuQb16tctTYQM19wJncg2lktyH1grxzaqH8VgiMelZE+sZTatLv2AZW9dmMcHKJNdEfphRaIQ4/OuG2KX7ekMKAAAApmqOwXKirxu5du3a+uE9165dc64JvHnz5ocffnjlypVHjx59//33N2/eDL5uRLjf7tWtq8aoU/Bqz7XNdaNJnwWDpf8YGG+adZnCeyzd9CrG0YQa3r7hdoI04rbtmBuhjHP7xjrGmsOEgYnddOS251X7Ssoucc4doAyUIfCv3zVHfrtelOusDPvhPV4cVxouPbxHmQUAAABLMLtgqQTIYbNl52B56dKl9cN7Ll265ATLy5cvv/nmm2+88caVK1feeuuty5cvh4Pl69fuPWv6wzalB6SKic8frlKCpXeZpncbXfj6zdhEiTW0X44hDoi1bRdexBFeWnBi725OqznuEGvaiKVVhPs4Ho9QefsyYrekTmOndgGBpyqFG+7+TmCnyVBfAQAAYAmEc1vPoetoWanRcZ0th1lQ12DZiR4sO4mPfB2vhLbP+/6/Ja9cAAAA4Ah0CJZ/8qd/9i//1b/u9N+f/OmfDRUsF/1qh2jb5945c68/AAAAsGyrFy9ePH369P79SLD8u/99u/d/e2vMYjHiBwAAAOCAUoMlpin0fkgAAAAA2BuCJQAAAAAgC8ESAAAAAJCFYAkAAAAAyEKwBAAAAABkIVgCAAAAALIQLAEAAAAAWQiWAAAAAIAsBEsAAAAAQBaCJQAAAAAgixUsVwAAAACARXr9+vX/64tgCQAAAAAgWAIAAAAA8hAsAQAAAABZsoLl8+cX5+dPTk/PCJYAAAAAsFgESwAAAABAFoIlAAAAACALwRIAAAAAkIVgCQAAAADIQrAEAAAAAGQhWAIAAAAAshAsAQAAAABZsoLlxcWL8/On9+7dJ1gCAAAAwGIRLAEAAAAAWQiWAAAAAIAskwmWZX1Sl0O0aI/Gq/McewMAAADAUk0mWM4ySx1hsiyqav/LneO6xxE6yNYPAABwFIYPlkXVnJiSE0NRNeK0Zb0tqqkK+6PdB4eSXOe2V5qqcLtIakuoZH/ewTphU+nDRDyy5WKsN+GJre3tfjWxagEAAMzGwMGyrK1zs7LuknuKqglMXFSNe8Y3kbGFDnUuqsbojLK2T2KdntNKXpW1U9Bg4VLoaGmiepRAT7a0jdXPY5actvThg+UgLUra+gEAACAaMlgWVeOdL4YG3kTBLDXdYNmhznqw9D8JJ0srWK665ndN0ql1WY82Uky2NIzXzyOuwQMZpEUESwAAgP6yguXzZy/PH399evfBD358IefK1WpVVtYZ33q4IjwWJ34z4WCZXudYsLS/V0r2gmWo67tLOLUeLsUGy+fkfjVmP4+9BvdvoBYRLAEAAPobLlgmhhs9WAZiRUKwbO9qFG+VMr42vmo/XX8o3rsZKTm5zl1HLIMl+8HSP7OW2xttkVFp665QaTbp/k7zDtC22M2nTVV4PS6Smp2+fo06paxfq+DkOru9k9SuxBbF+zlQ52h7lZIj7U3aU+S1L1fcOwKoW2xg/SZtkzpzRZb+YUas1ebq87K9LXMzWcfeAAAAOCbDBcuBRg3ELBULlvZVo25NUoYK63K3DGsCveROdVarEbjvTE6WfrC0Ur3eXrVFVqUD1+L6S5fKcn9nKOuTpjEKF2K0U1bdZf1qBYfXr1NJd8w4UmdnDWdc9S1uV4F+jtRZba9ecnwdaSWra19YkJvB1C1WXb9KiyL8OrvrN1Cr9sZmYy6zEl16AwAA4ChMLliK5+exYOleM2o9ysM76RRPaxv54R9qydE6K6Mp3lBL8E5NccRRCZaR9qotMjo6eNda4CQ+MgQrhpTw9mJPrtVZSIPChcLy+nXndbazaJ3N+Nvt8TEJ25USLJU6r/TtWSs53t5wyUkD8KEKqFtsfP0qLVJ5W6DdlVqt2v+19pjth916AwAA4ChML1hKA2XRS2G9Z6paX4kjOva/tWtzE04JU+ocGzhNLlkPltH2ai3aTKrebCafxEvtMT+LrwZrPumKxNT169IjbDuNd9VivM5tTbs+ljS+XUUbJtZ5ldBebcRSbW+w5NjaVxekLzYpM/YKlt5MVmvVWunBsmNvAAAAHIW932OZwhssS3p4j3yeLQ4c+pdSqhUPncF3q3O/YCkNHfrnvG2qT2iv0qL1kFQj3m4WXnroUz0fBLpdvvo3WOeE1KitX/teQT+Cx+q8rW2vp5Lq25V6yXGwzuIniSUnBUux5Nja1ybXt9iUXwX6BUu/ZLPGeq2iwbJLbwAAAByFAZ8KG7wBsfv5lH+hYJenwtoVSRvRSs146Q+0HSxY+qFFHGrxr9JLK9u7xzJ2Rj/UiGVgjninDLZ+vd9CosEydL9i5tsuOlzeGauz+Im/uMQ1q99VGpwu+Jm4IH0NjjZiqQdLvUhGLAEAAFwDBkvx9Ljni8udgCGEHDOvetnVvH5UOhkuikhsTSo5XudhgqUXt9xzXu9JIUp79RZZMweipbX09mUykeEu/bpDsZnGF5H16w/p6tErNGcsWEolrccPO8aalO1K7OdonQO1jJfsfi6VpF69nHylszu1vsXG16/SIpU0/Gxv/cFaxe+x7NAbAAAARyErWF48//b8/Jt7pw/XwdK7cUw8N6vU140Yk3kXtAYLdhOtfmeYdw6vX7OXftWsXecBg6XbG+6zTYT3HATbq7co5Z46Yxr7ZwO7SU4D1/nLzJleONbu6tTWgr/VJa5fu9zNxY91uUsmsTq383UdLkvZruR+jtVZa69eckJ7YxcVB9e+P236Fhtdv0qLIsxaFlVjPRJXrVUkWHbrDQAAgKMwbLBc2fcmSafbicFSjgfROwZDCw7MvL1bLThjvGS5zm3Bxvnn7n46s9S0802pZK2EcGcpLWqLXhcZvAVwN6F0+WagXttLRsVaRa6A3c/6barC2TrVOpuFdB6VT9uu5H5W6hxtr16y0t6kksNr359Q/sEpVHbsqKJtkzpzvs1SnMFUf7nbedo92eg2K5cn9QYAAMBRGDxYDka56HSyxqvzHHvD0ucuuENLq7Nyt+/M7GsdcV0oAADA8ZlusBQeWjMD49V5jr1hOLpgub1Qss/DqSZqvHXkXHM6v00BAAAAEVMOljgSxgWFs0kU0TpvJziSWDnyOuK6UAAAgCNHsAQAAAAAZCFY4vBSn+i0X9OsFTAv7EcAAPQzu7+hBEtMQK+XQY5umrUC5mW8/Uh/nHTkYdMwTLMnp1krpFvaGlxae8dDT5rmdi5KsMQ0dHpyzN6exDrHZw4dq4k/vup4ng48grH2o8WffXTb6sxbnZ31MURP9tpDjTfwdl3uAtZvF5M8Ai1tDc65vdP6CzvnnhzDrM5FBwuWmz9Z3ovN95Szjb+YdblaFcVcVsBBrQfYJ7F/ph4n9vvMnAkfvSa07kYWfZHooQW3yeWso4jx9qOiapSS9W/nreuR0H4ac1E1/vtx+/Zkyh4q7Av+e2M7Ljd//R7LHrpZA1NsyNL20Bm2d6J/YSffk3s9ekz4XFQw5Iil1M3qz5FDsbu8rKe2g0zWGDtGUdWd+77jPrOn9yBOe08+1ClRn/U70IJ7v8p1D3UWt8nFrSPRuPuRvlnM/v2/ug5HQu/3bu+1P9k9qU4S2BeiP8OPu371PXRa+1HEZN8OvLQ9NLe9/IVtS532lrO/8+dpn4sKhg2WVVU1dkfvIVj629fht7gF28PlFJP9E7oEB7tcJmOvXto2Oa1LmkY29bOPMXULlu6Pvu4n+WfE3fs6fn3XAdfvrPajSR2BLEvbQzPby1/YnaVtOauZHXPCBg6W5aqsreHCPQRL6U/TEb21fl6c1T+O6f4JPXp7Wb+y3n9GlrZNHnAdjUV/KJ7+t/hI/lKLOgZLe1rhD2deT44TLA+2fme2H03oCORZ2h6a0V7+wjpFL2rLmdkxJ2zwYLk+B9gd4Nxg6dwLaX3WVMX2f+tyZfxvhP8nMzCNdxl5++l6dqMm0pzmUoz7Q9xSjK93ZUnTBERKTqmz+br7wAKVy+qldRTrSaefAiVnMDu09P+EinXeXBRdtjcjCXcCJ/TVsNw7i+Q7jZzuNCvmblvuTE1VKNPYXbX+R0qzU9Zvj7UQ2drtfpM3qMAemlPnNMo2GVtH7eLE/Xe8fTCwteu1yjiaJQq1yKp18HjS9zEPoS0nZT8Kb3UJLVLXQmT/VY+EsVrZk/oVy3pgRmAPVdqyq4V+l1fvWvU6io523Eg61vXeroxgKbctUnLk74LaXqWfdxMMvgbDvXH487o+7V3kX9jhtxzOn3vovx8F2jt8sLRTtxks7Zs6rAtx2j9y1uEx9brt3XYQ2l+cGGtPtl7kbsHGBPac3l0pZX3SNE2w6MI710w+DYuUrNXZ+dXDaYK0IHePCqwjrzC/J4UCB+G3yO3n8HZlHV63nbWbvEtfDdsg96hi/ts+wgd+xZL/DJT1SVPXu2/cTdbcJr2brPrU3Cq551qIbu3h9kb20P51jtK3Sa3O2xlC++94+2Bsa4/VqufRLCKhRTE9zuMSju3B/Si21ektUtdCZP/VtrqkfcH4VvwyJ1n2uXDN2fcDh+Betco4irZ163jcEE4P7XMu9ViXtV1ZO6jbrJSSw38XokekeD+PsAYnfV7Xfz9a0F/Y0bYczp876L8fKe0dI1iaNTWCpddlzgm+ceRdf9r1MtrdQd3bhIJ/mtspGinEaqflq8Dm6izLWAUdbm+Olhyus79haKdqzkpR11G8J6US8ql/BfU6iz9YGFtYp74aUCRYuld4iNtO8ERNz6jq6u5e8+Dn6WshvrULLQlM6eyh/escEdkm1Trv5hf33/H2wfjWrtRqlXE0UyW1KKUUPfF43yYc24P7kT6v3qLIWui0XC9MxPeF7VKCXdy9J+W6Jn7rre7gOW/nWmUcRXdVGfq4oR/rcrYr+9jqVie+tSt/FyLtTernwdfg1M/reu9HC/oLO9qWw/lzspz9SGnvKMHSqG0bDv0ec38l2+Xhzaz97pNc/2Rj/SGPrCn9p12zVCe16k3aTLH7kazLmVi05GCdpb1A2TPcHV1bbNI2P8KO4RVp9YVaZ/2A27GvBhQJluu9IFKN8AhAcggfLlhmrIWU/WjzmVZZcQ/tX+cIfZuM1zl8zBltH0zY2iNHwr5Hsx6V7axPqGm/jB/bA5uGNK/aothaUJebuNVp+8IqdqKW0ZM9g6VwGtMtAGqhtd9RNFC30Mfpx43UmTtvV7tyYnVJ2dq7nBWs0vp58DU4+fO6vvvRkv7CjrXlcP6cLGc/Uto7UrDcBd9dsGy3SosZ55uqWJX1SV3XJ01V5Dx/x9gSEo4u2qG4tK4q1n/nk4raHoE63mWctGOIdZa2E/Wna2NyfR2lHKfH2DH85bq/SITrHA2WXfpqQLFgua1J+OywX7CMZfLuNXfr2n0tZP7ZU/fQ/nXW6dtktM7KZjbePpiwtcc2/p5HM01ai1J0fsxDp2O7dEYkz6u3KLYWtOVGt7qEfSFy8rgppmNPJpWdGCyDR6V+tep3FNVqknPciB7rem9X24GFRnwEgV6yUAljQWntjfXzutzh1uAczuv6tXdpf2HH2HI4f06Vsx9p7R0tWK6XWtfKiKWtrE+aqqpP1lfzNk3yLTzSFbPqPiX1T7jjgoffwB9Ffxy9qYquZ2LRkrUdY8hfXPRK9Z2ok8jpVGx8QA+WEx2x9KokH7a7B0v7YNCjocm/TYpfpv7Zk9aC1N7YHtq/zrrxguV4+2DC1h79VaXf0axHZfuV1OHso+ux3fsxKzxvdGfuO2KZ8BObvi+kpMp1JXoly0GCpfb7eL+8u1tQ+lE0UDf14zTasS5nu7I6zuvD+Lah/F3o1t5AP2++G24NzuG8rld7F/sXdsAth/PnZBn7kTZvVrB8/uzl+eOvT+8+kILl5peO3YLFn0iKwpn8pC43G3Ny9xb+lT36X+PVyh4NDXVcyg/E8bPLdbM6bizRkrus7Mgvd86Pk+F1FO9Jt8BhXjYj/Vxo/5AbrHPkgNutr/xa9X5wl7Ngp2e9ThXPfvoES2Ffyal5u35z1kLafiS1NzHf9alzhL5NanVW6plQq5x9ML61x7f+XkczVVKL0pTpj3nofGw3vo7Nq7coPmQV3n+1rS6+L/jd4/7FViZN+XaQYKmfxXWoVc5RVKjbMMcN7ViXt135W0o7bXTbUP8uRNqb1s/baQdbg7M4r+uzHy3nL+yYW86izp9zzkX770dqe8cMlm6d/X+GflXr/ktH5CFfztcJu8p2RvvovC5ou76dBYd/E+28zqMlRzZ2+3dOZZeUzmPC6yjWk3bFhrsRy2xDUTXWA7/UOscOuJ36SqjUIHtzWTeNEyz9x9+lhpbYiGVpP7aw8wl8cP1mrIXk/cj7NLaH9q9zlL5NxkrU9t/x9sHY1p7ws0qfo1lEYosS9jX9dxPr24Rje3A/im51eovUtRDZf5WtLlIr8VrgYI926Enr4z7B0n20UbiMTrXKOYp6cwx23NCOdXnblZ8VO5Ss/11Q25vWz+2Xg63BOZzX9diPlvMXdtwtZ0nnz1m/9/bej1ZKewe7FLYSL5T2H/vUXnAh9Wn762uHM96iLAvryCj+Lil96xxN/Tnd+ewTnHJzOUR4uZtCOgcspeRond2J1J4UfghS11HkW2vZg55/mqVu6uD8UfVrtZ1nfXX15rv2Q7fkWF+JlerbSKPG9e69U+3mr63i8NdtU3Y/0NgNk64Z6dHowPrtuxYi+5G3xbvnT+Z8cgTpWufuPeFskynrSFnqePtgYGtPqtVm4YM9t8csVG9R6k+yXaKNsuVE96P4Vqe3KLoWAsu1PvS2Oq1W/k7kFJvRk/oeqh/OyqoqnIOhou/6FVZD5GunYYMdN/RjXe/tyt1S2smSttj434Vwe5M60px6qDWY0huBGfd3Xtf7x5YO7Z3rX9jxtpwFnj9nnIv234/C8w55j+XipK3L4PVG2SXnU38jQoRwVJm0wC9ke9nSNPva2pGvz9Fsj/qcx0EyzZ6cZq06mOKxbq9/F2awBgc9r5tEe6e41XXWoSeXd/48tXNRgmUGdfPdDhL3ul9ovB3DuZbqCI43BzK1PTmFf0nIJP7iTKIS0GQdzfYq7wEhaE2zJ6dZq2STPNbt9+/C5NfgwOd1E2jvJLe67pJ7cmHnzxM8F80Llhevzs+/Ob23xGBpDADL29Z2gl53sfUaDE+TceUn5s+5/OTgx8WRt3YMo/fRDMDalI91U/u7cCjjndcdypS3ujFw/jwFeQ/vufh2scESAAAAALBGsAQAAAAAZCFYAgAAAACyzDZYTvzphAAAAACwGDMMlj3vnl7Pxu22AAAAADCw/QfLQV6w3eP9MQRLAAAAABjF/oPlIO/tmc6LSQEAAABg6fYdLP1X8fay32C5HuxcxEuAAAAAAKCzoYOl+fpQO/pZ3wTeX2pM48fG9sWnTVV2CZbmjPYC18trqkKZZkWwBAAAAADNkMGyqBozEBZVI4Sxsg4kNHvysrazpTXS2e92yaJqhCWX9UlT17tv5EoDAAAAAIKGDpZmKBOvVw0FS+9z8wMv7vW5FDYYLN1KEywBAAAAoINx7rFsLyxNDZb+x2Z29L4dNFhmR1YAAAAAWLJhg+X2Hsl1VOswYtkmUekmTP/6VIIlAAAAAEzFgMHSucWy26WwwVsvtwURLAEAAABgmoYLlonpzwpyZWXeRelOWxTb6bxv3Wf7pCBYAgAAAMAYBhyxtB+Ds7m4tS6N9Lj9fBPciqp2HvVjRDwnBppJsqiaptnniCWvGwEAAACAsEHvsTTvlGxfDim/PFJKau78q+B8mynTsp53A+dutva9mess6f7bKoBgCQAAAACScZ4KCwAAAABYDIIlAAAAACALwRIAAAAAkIVgCQAAAADIQrAEAAAAAGRZfLAs6/m9tnK8Os+xN3Isrb0AAADAOBYfLGeZLY4wWRZVdYjldmzvgWoJAAAATNzxBEv3bZXJeaGoGnHa9qWW3nsvD/5Ky+Q6t73Svv0z8FJPvWR/3sE6YVPpQwVaub3CdAesJQAAADBtRxIsy9o65y/rLrmnqJrAxEXVuEliImNWHepcVI3RGWVthyOn57SSV2XtFDRYuBQ6WpqoHiHQK+0VJiVYAgAAAIJjCJZF1XgjSakDUduJ5Wwx3WDZoc56sPQ/CSctK1iuuuZ3TVJkK+tRRorTkyXBEgAAAJAdQbCUcuVqtSorKy2sL2UMj8WJ30w4WKbXORYs7e+Vkr1gGer67hIi23ApVig6rWCCJQAAACCbf7BMDDd6sAw8xCUhWLZ3NYq34BlfG1+1n64/FO/djJScXOeuI5bBkv1g6ac9ub3RFhmVtu4KlWaT7u807wBti9182lSF1+NexUJbkFmd0t8cxPZurhIu29syN5NZ1ZbrDAAAAMzR/IPlQCNZYraIBUv7Kkq3JilDhXW5W4Y1gV5ypzqr1VinG68UOWn5wdJK9Xp71RZZlQ5cm+ovXSrL/Z2hrE+axihciNHB9golu30XaG97A6oxl9kAtc4AAADA3BAst6S7MmPB0r2G0nq8jBeE3A+KqjlpGvmBNGrJ0TorI3ze8F/wTk0xfinBMtJetUVGRwevSw0Ey8gQrPe1f+Xv5lOxJ70VZo1LBtvb/q/Vsu2HScPGAAAAwHwQLHeEgbLopbDeM1Wtr4QU5ozhqdfmJkSNlDrHBk6TS9aDZbS9Wos2k6o3McrBUmqP+Vl8New+dUsXbyk1E2u4YD1YxuoMAAAAzM38g+WA1xF6g2VJD+9phwjd1ChwL5VVKy6X3LXO/YKlNHSo3WOZ0F6lRevB20a8jTG89NCnZhekBktpSNXN/eacenujwVKtMwAAADA38w+W4RsQu5+nS9ki/amwdkWCt6LahzAAABQaSURBVARqpSeV3LHOfYOlnyzFITz/6s+0sr17LI0kJhY01IhlsAec9urBUm8vI5YAAABYlqxg+ez5y8fnX989fXDY91hKsUu+JzGlqMjFqmZe9bKreT2lFBuLIhJbk0qO13mYYOk90kZ9j2WkvXqL3If3RMcm25fJRIYk9etZ1fZ6U7qPVwq3N36PZeIwKgAAADALxxAsvdv3xHN+/XUjxmTeBa3BgqXHwAafGupnQz3ipF81a9d5wGDp9oaZh4T+VNurt0jvOW8a+2cDu0lOA9cPK7Ke5RPeCNxH+JhlFVVjPV5WbW8kWEbqDAAAAMzNEVwKu2be8yYlh8RgKce/6B2DoQUHZo4+mjVeslzntmAj1+zuajRLTcsxUslaCeHOUlrkvmMyeGvpbkLpsUKBeq3TnNcv0fZKyyza92Kq7d3O0/a4UQX7lSSd1gYAAAAwVUcTLAejXHQ6WePVeY69Yel26+f82wsAAAAcAsHSF3yT4oSNV+c59oahY7CcfXsBAACAQyBY4mgZF6oSFgEAAIARESwBAAAAAFkIlgAAAACALARLAAAAAEAWgiUAAAAAIAvBEgAAAACQhWAJAAAAAMhCsAQAAAAAZMkKlhcXr86fPLt3RrAEAAAAgOUiWAIAAAAAshAsAQAAAABZCJYAAAAAgCwESwAAAABAFoIlAAAAACALwRIAAAAAkIVgCQAAAADIkhUsn198e37+zek9giUAAAAALBfBEgAAAACQhWAJAAAAAMhCsAQAAAAAZCFYAgAAAACyECwBAAAAAFkIlgAAAACALARLAAAAAECWrGB5cfHq/Mmze2cES2BMRVWVh65DnrKqikPXAQAAAOMZLFgWVXOyUa/PgXefNJxSIpGxGe02JPu7euYJy5TQom2HTKbZndfCpgUcBQAAAI7akCOWRdU4p49F1UzmhPhQiqoe6ZR6vJIPxNqAytoNI+MFy0P1ZGKLiqqZS7AM9GRZEywBAACO27CXwpa1dcp5dMmnj7Ie65R6vJIP43D5aeI9OalgqQv0JMESAADg2A18j6WVLMt6JmfDI/LH3aZf8qEcKj9NvidnEyyDPZkSLNdDoZNeEQAAAAga+uE97dWM4nCleQtde6rs3oXV666sst6V7M1ofGcNqa4/b6rCqFjHM1uraLNw5wuhaL1W7Yfbf29nj5cc4rbSXZIzUYd1FKtzlz70ZwyvnaTlZqyjbjW37y5uqkLuYbVFwgSlHyyNBXfYcuINaapi+791uTL+N1LnSE9ugqXaaoIlAADAnA3/VNjNoKVwTZw1nlFUjXtO7IaB9HNMuzD7glxnQe6NoGV90tR1s/3Iv080slxjYnG8JtCOSK1W22Gq3WCVc5VxuOSEOjsx0iw2bx1F69ylZuIEcou15fZfRwn1DZdc1idN04Q2ykiL/LXgJv92Lr/gnmuh7QVjRQg/DwXXwirck5ve6LeXAQAAYAZGeN3IZvDCPZcVk5F14t03WApZ0fi3+60TX9ykoZ02e9z0LJyGK8FSqdV2ika5SbX3fWtlbcau2um5nHUUrbMqL1iGltt/HcWoJXtdKYYpsUXelHbHeLV1P+i7Ftrtoi1ReEtIz2Bp9UanvQwAAAAzkBUsn198K73HUjyFlsZNzM8ygmXqpO2FeMooXLf72cpaiNDdKifWapUwqtP/gShtgojlyo7rKG8kKjNYKmEndx2F5wuW7JcpNU9sUWAgOLngvmvBGuNclyDdJt13xLL/XgYAAIDpGyNYiqeX0mfm6WX/YJmSwIz7uvwRy8xT3lAylMtPq1VKRTKetLlNls6YW/Y6yssLuZfCRorusY4ShEruHyzFt/bs5rRe9Cnf0Nh7LWxqU9YndV2vb7cUyiFYAgAAwLfPYHmQEUv3PsHhg6VZVOr9e7FapVQkJw6Vm9zgXVOZP2I5yWC5M+Q9lmrJfplS73YPlgmV7b8Wyvqkqap6c4dm04hvoSVYAgAAwJcdLM+/SQuWsSEc5+sul/NJ027HWiJn6XmnvN6AjnDObZW/vWMtWquUioglpyprd5zLK9KvRXQdTTBY9l5HUXrJaaE7eI+lNaX7MCI/nxYDrYX1ZlGXm58+xN5ODpZGTxIsAQAAjt3+gqU7ZOMM4FgppazNZ0jGOTe7mae+/pN8Nm9S2Jz15gXL+DWI8hM2Y7VKqYj+7M6YQHLPW0eTDJZ911GMXnIb0cSJ9RaZ/V5UjfV4WW/VeWVkrAVjJD04MqoFy1BPpuxlBa8bAQAAmLGhL4W1bgHzz263NxZK3xqz1rtX6CWfIJsL9s+zzW+ME9i2OruTaeVWPHWZwoLdNnun1tFaacUGS04UjFC91lFynQN10Tsy/H10uTnrKKfS24uNO7dIqNFmYjtMSnPmrYVNwbtg6F4Im9SVQk8m7mUESwAAgDkb5R5LTF9RVVyKOKJB7tsEAAAAZoJguSzbyyjF531iOARLAAAALElmsHxxfv709N59guVcbC9nJFaOyLhmlHAJAACARSBYAgAAAACyECwBAAAAAFkIlgAAAACALFnB8tnzi8fnT+6ens0sWOY8EZWnqQIAAACAbWHBMufZNTz3BgAAAAAkCwuWq9U6IPYNhznzAgAAAMBxIljubV4AAAAAOE5DBMu79wiWAAAAALBYucHy0ePziQTLsj4Jv5W+fWV9U5Udw2FkXmO57TdlvZt888VmMqtqbcncuQkAAABgvo4jWBZVY0SzsrZzWlkbgW4d5pJjnD5vUTVGVLSWu4mWhTVXWbeT+yWTLQEAAADM0jEESzveOZHN+7bL5ayRec2c6H7Q/q8xT/uhG36lTwAAAABgFo4hWHr5Tv+2Q7DU5/WXK2ZI6UMpRZIsAQAAAMzTEQRLb1gx8m16sNTnNe+QNLRDknqw9KrMg4EAAAAAzNMRBEt9xHK8YKkvlxFLAAAAAEtxDMFSGrIsa3Ng0cprHQKcPq+UUIuifTZP5B7L8GW0AAAAADAnWcHym2cvHj1+evfu/UM/Fbasrae1FlXjPszHiJlN0yHB6fM6kdZcbiRYuvmW4UoAAAAAs3UcwXJl3/HoX6C6e9lkUxWbKZXn/XSZV17udp663H7fVEX7oVsy77EEAAAAMGNHEywBAAAAAIdBsAQAAAAAZCFYAgAAAACyECwBAAAAAFkIlgAAAACALARLAAAAAECWrGD57PnLx+dfn957SLCEoKgqXqJS1skvtjkKS2svAAAAVqsVwRLdrV/Nqb54c/v2zgW/nbN9SekygtbS2gsAAABL7qWwBMvlSQiW28kWHCw3iqpZVNBaWnsBAACwRrDESAiWq9XygtbS2gsAAIC1AYLl3dMHBEt4CJar1fKC1tLaCwAAgLUhngo7iWDZ3uIl3txnfG2c97afrqff/ts8NbYKbovd3EXYVIVXivH1rixpmvQW1eX6H+a81tfOp01VeDWI9lWkRVKrPOYEpR8stTrra6FTZ4UqvPtXwvot610jNl9sJmyqIqmv2hqE2hGoM+3V5/WLb1ud3iIAAAAMKytYfv3NxTSCpX02W9b2yWNRNcYJZ1lLcakudwNsxgT2nKuiatxz9KZpgkU7Q3ZF1aSfT5vzuot1P3EWW9YnTV3vOsSdW+2rSIvEIswFt2V5N2KqdV5payEmUrL1dVHVwS1DKMiMVdtqbafI6qtYb9Bee97wYv2tzppUaxEAAACGcxzB0n3FgXk6LaRBKaY1dfR02IuK+jn9eoLd9/YpfrRBXoIN/9P5QMjV9szhvoq3SCoxMKXdWXqdV9paiIiW3FbNb7uyfttijI/toNW3rxLqTHsDS7E3bz+iGp/EWgQAAIDhZAXLp89fPDh/+tXp/UMHy/XYhDwGEj+RFE+QhWm8q/j8ot37Cttk2SlX6kkyslgpsXnX0AbGi+It2nzm95cYb4KV8gtOWQu9q7xOrcqIsbB+E4LWYH3V4YZU2mt/KV71vrummmAJAACwJ0cSLFerQPZLySvaSa59v58/Yhk7X94my66vjVdSmXlHmWE3RSxY2mV4wz09w4N8va55Na9W58CCEiSUHKjftsGh9Tte0EqtM+2N7b9SSmxrRbAEAADYnyMKljvexXJ9g6VzS1pCsBSvzGuqomuudE7GY+lvpX2tJjbhHstYi/oEy5y1EJEUFMq6qQpxTDW8frsHrdS+ygo3tDdSA0YsAQAADuEogmVZ+1cC7k4epSEPe4ZQpIlkpdjVn+1EqaMzVkH6ZYze+XwRDIfuvY5KX6W1KHyPpTtYa95hqtY5tKQE8ZLbNvtDv0lZODFoZfSVX+egJbY3vP+qw6gESwAAgP05kmCpXlXp3FTonfoGI41d7mYMsS5XZbX+sLTfAeI/Fmg3X/dT2e01i+KYpVNk4T7oVQ2WWl8lt0hqkJkki6qxHiEaqbNXkS70ku2MrjzmyF2/KQ+z6d1Xsd5YUnvXFdGHJcP7rz1oaf2LYAkAALA/RxEsvXu41Lu87Aymz+jOZ58Dby9zjdw01u25PZuSY1cdRlu0uxrQjqZ6X0VaFO3o3ZxNVWwmdobM+qyFuFjJbmdspwmv3+206zegbL5vP4z3ldcq6QE7fVt8VO2NBctoX5mLdn8k0VoEAACA4RxFsDyUtMGPoqo6nsUG7mHcw0ALwznpltZXS2svAAAAuiBYZlBPtbcX/3k3NaYV7JS8p7N6wkO6pfXV0toLAACALgYIll/ePVtgsDQuzpNPt7cT9LzozrnqdA+n9NEWYWdpfbW09gIAAKArgiUAAAAAIAvBEgAAAACQhWAJAAAAAMhCsAQAAAAAZCFYAgAAAACyECwBAAAAAFkIlgAAAACALFnB8smzi/uPnxAsAQAAAGDJsoLlo/Nnp2ePv/jylGAJAAAAAIuVFSwfPv6GYAkAAAAACzdAsPz8zl2CJQAAAAAsVlawfPD46d2zh59/SbAEAAAAgOUaIFie3PktwRIAAAAAFisrWN5//OS3Zw8IlgAAAACwZARLAAAAAECW3Ethf3v24LMvviJYAgAAAMBiESwBAAAAAFkIlgAAAACALAPcYzlMsCzrk7ocokV7NF6d59gbAAAAAJYqL1g+evrV6YPPvhjk4T1zzFJHmCyLqtr/cue47gEAAADsDBAsP/3cGrEsqubElJwYiqoRpy3rbVFNVdgf7T44lOQ6t73SVIXbRVJbQiX78w7WCZtKHybikS0BAACA+Ro4WJa1lUzKukvuKaomMHFRNW7sOMjImq9DnYuqMTqjrO0I5/ScVvKqrJ2CBguXQkdLE9WjBHqyJQAAADBTQwbLomq88a7QwJsomKWmGyw71FkPlv4n4WRpBctV1/yuSQqWZT3aSDHZEgAAAJijrGD58NGTu6f3Tz7/8gc/vpBz5Wq1Kisrhawv5QyPxYnfTDhYptc5Fizt75WSvWAZ6vruEoLlcCk2WD7ZEgAAAJiX4YJlYrjRg2UgViQEy/auRvFGQeNr46v20/WH4r2bkZKT69x1xDJYsh8s/bQntzfaIqPS1l2h0mzS/Z3mHaBtsZtPm6rwelxEtgQAAADmJfd1I1/du//pF1/+4McXQ41kiaEiFiztq0bdmqQMFdblbhnWBHrJneqsVmOdvbxS5IjlB0sr1evtVVtkVTpwLa6/dKks93eGsj5pGqNwIUY7ZZEtAQAAgLnICpZnj84HD5biXZmxYOleM2o9XsYLQu4HRdWcNI38QBq15GidlRE+b/gveKemOOKoBMtIe9UWGR0dvJMyECwjQ7De1/6Vv3ppAAAAACYrK1jee3R+5/Tsk8/vDBkspYGy6KWw3jNVra+EFOaM4anX5iZEnJQ6xwZOk0vWg2W0vVqLNpOqt1rKwVJqj/lZfDVY8xEqAQAAgBkZLlgO9gAZYbAs6eE97RChmxoF7qWyasXlkrvWuV+wlIYOtXssE9qrtGg9eNs0VRnuk2Cw9D41uyA5WJIqAQAAgNnJDJZP7pze/2TzVNjgDYjdc4J/uWaXp8LaFQneEqiVnlRyxzr3DZZ+shSfCms8YqfDwLFwj+Xmn8Fx3KFGLANzkCoBAACA2ckKlqcPz41gKcYu+Z7EKCdgCCHHzKtedjWvH5ViY1FEYmtSyfE6DxMsvbilvscy0l69Re7De6Jjk+3LZCJDkmIY9u7JJFUCAAAAczTgiOXKu31PzDj660aMybwLWoMFS4+BdZ64ao/KRcdDE0vW6jxgsHR7wwxpQn+q7dVbpPecN439s4HdJKeB64cVWc/yccMxqRIAAACYqWGD5cq+x0+Kj4nBUo5/0TsGQwsOzBx9NGu8ZLnObcHGhaW7uxrltz2m9Yb/MkmphHBnKS1y3zEZvLV0N6H0WKFAvdZh2OuX3ZekSgAAAGC+Mi+FfXrn9OEnn//WCJaDUS46nazx6jzH3rB0u/UTAAAAwJxkB8u7D35z8tUYwVJ5k+KEjVfnOfaGgWAJAAAAHK+8YHn/yZ2v7n/y2UjBEkfCuPyWcAkAAAAcoQGC5W8+/ZJgCQAAAACLlffwnnvnX355/5NPCJYAAAAAsFy5wfLOnTOCJQAAAAAsWVawPDt7woglAAAAACwcl8ICAAAAALJkBcu7Z+c8vAcAAAAAFi43WH7x5RnBEgAAAACWLC9Y3j///Kuz//PpHYIlAAAAACxWVrD87dljgiUAAAAALBzBEgAAAACQhWAJAAAAAMiSGyxPvjz71SdfECwBAAAAYLEIlgAAAACALFnB8qt7BEsAAAAAWLrcYPnZnXsESwAAAABYsrxLYU8fn9y596vfECwBAAAAYLkIlgAAAACALFnB8u7dR198ce/XvyZYAgAAAMBy5QbLkzsESwAAAABYtLyH99x9/OkXZ7/6zR2CJQAAAAAsVlaw/PLu40+/OPsHRiwBAAAAYMFyguX/B7b9Rcw0LtJGAAAAAElFTkSuQmCC" alt="" />

新文件目录及内容

demo/
scrapy.cfg
tutorial/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
...

这些文件分别是:

  • scrapy.cfg: 项目的配置文件
  • demo/: 该项目的python模块.
  • demo/items.py: 项目中的item文件,即写将要抓取的内容.
  • demo/pipelines.py: 项目中的pipelines文件,即写数据如何存储.
  • demo/settings.py: 项目的设置文件,即写如何定制Scrapy组件,这个比较复杂可以忽略.
  • demo/spiders/: 放置spider代码的目录,即写如何实现爬取.

定义爬虫文件

1)定义Item

#item.py
import scrapy
from scrapy.item import Item, Field class DoubanItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field(
title = scrapy.Field()
url = scrapy.Field()
rate= scrapy.Field()
tag = scrapy.Field()

2)定义spider

# coding:utf8
import scrapy
from douban.items import DoubanItem
from scrapy.selector import Selector
import re
from douban.pipelines import DoubanPipeline
import json
import urllib import sys
reload(sys)
sys.setdefaultencoding('utf-8')
class DmozSpider(scrapy.Spider):
name = "dmoz"
allowed_domains = ["douban.com"]
start_urls = [
"https://movie.douban.com/j/search_subjects?type=movie&tag=热门&sort=recommend&page_limit=1000&page_start=0",
] def start_requests(self):
reqs = []
tags = [u'热门', u'最新', u'经典', u'豆瓣高分', u'冷门佳片', u'华语', u'欧美',
u'韩国', u'日本', u'动作', u'喜剧', u'爱情', u'科幻', u'悬疑', u'恐怖', u'文艺'] for i in tags:
url = 'https://movie.douban.com/j/search_subjects?type=movie&tag=' + str(i) + '&sort=recommend&page_limit=1000&page_start=0'
req = scrapy.Request(url)
reqs.append(req) return reqs def parse(self, response):
html = response.body
url = response.url
# print u'地址',url
tag = re.findall(u'tag=(.*?)&',url)[0]
tag=urllib.unquote(tag)
# print type(tag) dictt = json.loads(html)
dd = dictt['subjects']
items = []
for a in dd:
# self.get_tag(tag)
pre_item = TutorialItem()
pre_item['url'] = a['url']
pre_item['title'] = a['title']
pre_item['rate'] = a['rate']
pre_item['tag'] = tag
items.append(pre_item) return items

3)定义pipeline

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo class DoubanPipeline(object): def process_item(self, item, spider):
db = spider.settings.get('db')
dbb = pymongo.MongoClient(db)
db = dbb['douban']
# lis = (item['url'],item['rate'])
db.info.insert(dict(item))
# lis = (item['title'], item['PORT'], item['POSITION'], item[
# 'TYPE'], item['SPEED'], item['last_check_time'])
return item

4)定义setting

 MONGO_HOST = "127.0.0.1"  # 主机IP
MONGO_PORT = 27017 # 端口号
MONGO_DB = "Spider" # 库名
MONGO_COLL = "douban" # collection名
# MONGO_USER = "Ryana"
# MONGO_PSW = "123456"

运行Spider

进入spider所在的文件夹,执行scrapy crawl  spiderName 命令即可,这里再推荐一个MongoDB可视化工具Robomongo,运行结果如下图

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAo4AAAIICAIAAABvhfhyAAAgAElEQVR4nO29W7Abx53mifd5nIjpfdqHnRc/TMzL+GEDu9Ed0e7uabUldbu9vvT2urvPkVyzu9zwbDi2veFdT3TM7Lh9kSiVrIstUxJ1l0iZhwJoFslDggQPeBUFUTRF8lBFiKKOSJk6hHm3SMtU7UMBhbxXFioL/0Lh+0WGBBQKWVlf5j+/yssBa1eG9Hq9devWvf/++x988MHNmzcjAMZidXV1eXl5aWmp0Wh89NFHVwAAAOSjlrxat24ddScPKkUYhk899RRh4wYAgGowsOpdu3a9//771H07qBphGO7evZu2iQMAwLQzsOqtW7d+8MEH1B07qBrnzp3bunUrbRMHAIBpZ2DVL774ItangXNu3rz54osv0jZxAACYdmpXrly5dOmSzUL1mx/uO/j+0gT6d1Al1q1bd+nSJep2DgAAU8xgVJ1q1d3zB/7r7m//x033ne33JtPFg2qwbt062iYOAADTjpVVf3jl/e8E9/3nXd+af/mrazbM37h9Y2IdPZh2YNUAAJATK6t+qPOfv/3Lv/9Pi//73Itf+cpTX1x/8MmJdfQgD7VajboIsGoAAMhLulWfu/ze/Zu+/K3m//L/bP8Pf//Cl7/887/48s/vshlY12q12CqSF+WnNsTyuPNLu83QVVZ37twxvDUDqwYAgJykW3Vw+vV/+MWX1rz+N98J7vvGc1/66yfv+usn79q9vGjTTSduQWjVNR7Lr2Q67gS3Vu0wqyd+9vhD/oNnzpyJ3547d85/ZO3Pnnzc8uuwagAAyEm6VT926KFvbPzL/7D5q9/+5d//7bN/9aWf/fmXfvrnj+5+0KabnrBVK0fD5hMs88n09bHzd4jDSzzy6MM//PH3H35k7Znemffee++RRx9+8KEf/eQx3/LrsGoAAMhJulX/p13/999suCeeA/+fn7n3r3767//qiX//vdf/0aabprXqVOe2zCfr18fO3xVu8w/PhGsfftD/ydpHH3/ksSd+8tgTjzzyk4fDXmj5dVg1AADkJN2qv7frH7/6yhfjOfCvP333Xz7+Z3/5+J/9v6//X7rzlRPO7KK1vV8qJ65TD9o/H+gKk8mqDbPrluVUnmkoZ/LWcF1zJrrXOnq9M48+5j/xs0fXPf2zn/7s0V4vwx/swaoBACAn6Vb9yrEXvvzKX8Rz4F9d98V7H/vTex/906eWfqo8uaYZ18pmY+7fdSfr8rd5q7uEpdXZnDlesc3HleU06+ncqs/0zjyw9kff/8F/+f4P/suDD/04Wbe2AVYNAAA5Sbfq935z5ksv/3k8B/4//fyuex79k7t/8icHe/uUJxus2nCaOZ8irHq8L9pbteVTgqv8s8qbiTNnzjz40I9++KPvr33oxw/5D/7ogR+sffhBe7eGVQMAQE6s/q46mQP/6yf//O5HvjC//m91Z7qy6kgzu1uTsLm6fTnNX1RaqbI8lbHqO3fuPOQ/+M8//P8eeOjH4Zmw1zvz8CMP/eiBf/YffdgyB1g1AADkxMqqL9749d9v+so3Nv7lvY/96V/4X/jVytu6M4sYVdt/MfUqOa0uz1S5k/zt9XTl1p999tljj//kgYd+9O6778ZHzpw58/Aja5/46WOWOcCqAQAgJ7a/AX72N737F77+1Z98ceeJ7YbTdOupBssx+JY8dLa0WOV17Ser81vpeJdWXjfTvZizGhv5N08+++wzy+/CqgEAICe2Vh1F0fsfnnx3+XDqaay/Ci+U1mv2J/mtMh9DhuOdrCynMitDeewvbcjfcLL5KsrrTh5YNQAA5CSDVf+mf/6j8+9OoHOPCt4nNTuUQTdYNQAA5CSDVU8Y8+gZTAuwagAAyEl5rRpUA1g1AADkBFYNigVWDQAAOYFVg2KBVQMAQE5g1aBYYNUAAJATWDUoFlg1AADkBFYNigVWDQAAOYFVg2KBVQMAQE5qzz777LPPPgurBgWxbt26ZwEAAOQAvy4CAAAAlBpYNQAAAFBqYNUAAABAqYFVAwAAAKUGVg0AAACUGlg1AAAAUGpg1QAAAECpgVUDAAAApSbFqq9fv35exaVLlyZTPgB0/OY3vzl16tShQ4f279+/c8ji4uKBAwfeeOONM2fO3Lp1i7qMAADggBSrfvvtt48fP36Wp9frdTqdyZTPCYcPH96cxiuvvEJdTGDLZ599duTIkXa7ffjw4ePHj4dheO7cuZWVlZWVlV6vd/z48W63u2/fvp07d548eZK6sAAAkJcUq37jjTdOnz69fv36Fxi2bdt28ODByZTPCZs3b+71ep/ouXjx4ubNmw051IYUVEJl/oVecaq5ffv29u3bu91ut9s9duzYiRMnwjA8e/bsuXPnzp49G4bhiRMnjh071u12O53OZ599ZpPn2GqjmgAARWNl1Zs3b94xJH49dVb9ySefPP7440+qePzxx2/fvm226piie2Q5f0IPqDEoD9o/Wyjvy5BPKtevX9+5c+fZs2dXVlbiaZ7YpM+fP7+ysnLu3LkwDHu93tmzZ/ft23fnzh37W85UjPxfBAAAG6ysutFobNu2bdOmTc8999z69evtrdpVF5Yzn82bN3/66adPPvnkjh07tm3btm3bth0MTz755IxYtX1usgebj+vO0TmxIR8brl27tm3btiNHjvR6vcuXL9++ffvOnTt37ty5efPm6urq2bNnT506dfTo0b179+7du/f3v/+9ZbawagBAORG7mOvXr7/99ttvDNm+fXur1dq8efNrr732wgsvPPfcc88999w0WvXt27djq96xY8fOnTvj/+7cufOFF16AVaeemTpWNp9vvu4Y93jr1q2tW7fu3Lmz2+2eP3/+6tWrn3zySezTvV6v2+3u3bu31Wpt3bp1cXERVg0AmHbELub8+fPHjx8/derUaYb47datW2OrO3z48P79+1PyTZsmtTyeZ5o0IbHqZJ/w5s2bX3rppaeffvrpp5/Ob9WGiV/DbdrkHx8xjE11BzPJmKpt1mGxvVWPV6c3btzYsGHD1iGtVmv//v379+/fu3fvjh07kuM7duzYvn27eQI8taHavDVUk64udOcDAICMwqrPnTu3fv36TQzr168/d+7cnj17Dh48ePDgwf379489qtZ14kJflppPJhKrbrVajUbjOZ6cVq28hUhzR1lvU+7l7fO0l9FsGDZPFRO26qtXrzabzVOnTh0/fvzIkSOdTmfv3r179uzpdDoHDx48cuTIkSNHjh07durUqVarZRhV56wy9pysVWOuKQAAYFFb9UsvvRTPEm/ZsuW1115bt25dvFVndXX13Llz58+fTx1VD3Ify6pt8slEYtUvqMhj1ePdTqQfEI+Xf3EyGtx97Lc5ixRF0bVr115//fUjR46EYXjx4sWrV69ev379+vXrq6ur58+fP3369IkTJ7rd7p49e3bt2jWGVbs6zh6xsXwAAFCisOqzZ8++9NJL27Zte+WVV1544YX169evW7fu7NmzO3fu3Dtk69atNn8Do+uzWOSPbPLJRLytzLAD/JNPPpmYVSf3WIRVR05ltPRpc3ky5WPJrVu3Nm3atHXr1iNHjsRr1bdv32bXqvfs2RMvc2zdupXWqpXVDasGAGRCPapet27deobYqg8cOPDOO+8sLi4ePXp0ZWXF5m9gbNzI1bcMbN68+aOPPjL8XfX58+cnY9XmaU8nVp0pfwOZhsITtuqrV6+uX79+69atjUZj06ZN27Zt27Nnz549e1qt1pYtW+LftIn/bGHz5s2EVq2rblg1ACATCqtO9pGx28pOnTr1wQcf3LhxI965895771nlLvVZWTs189ctefvtt1N/rWx5edn+dmzKprwj9kUeq9ZddzwZ5cKMYb2GOnJu1aurqy+//HKv1zt16lS83zv26b179+7fv//w4cPxWvWJEyeazebvfvc7XT7K4a/hdnTnp7ZqXebKtwAAICD2EZcuXYo3jiW0Wq1Wq3XgwIHt27dv2bJlz549Fy9efOONN2wvoLKBBPNBcz72xBPgt2/fXllZucnQ6/XCMAzD8Pr165a/VqazWJ176W4/kvp6OX/zW+V1x5PRnI/yU8vMU3VT5pPKxYsXX3zxxePHj8ez3/FC9dWrVy9evLiyspKsVcdz4J988okhK7ZsqfLqzjdrpTtZzhAAAJSoR9Wrq6urq6v9fr/f78f/PsepU6c2b968ZcuWVqt1+vTp6foN8M2bN19Mw2YCHJSEq1evbtiwodFoHD169PLly/EqxtWrVz/66KMwDI8ePbpnz56tW7e+8sor27dvxz/aAQCYdhSj6gMHDuzbt2/37t27du3avXv33r179+3bt3///vfff391dfWtt946cODAr3/9a5Lijkfq7HcMdTGBLZ988smFCxd27969cePG9evX/+IXv9i6deuWLVuazearr776/PPPv/zyywsLC2+++eZvfvMb+59AAQCAciJa9Wefffbpp5/eunXrxo0b8bzib3/729/97ne/+93vfv/733/22Wfxa8t/AqEkXLt27dq1a5cvX15ZWXn33XeXl5eXl5fjf+Ah/lOfq1evXrlyhbqYwJY7d+7cunXr8uXLFy5ceO+99+LHx3379h04cODo0aOnT59eWVn5+OOPr1+/PnVtFQAAZLBCBgAAAJQaWDUAAABQamDVAAAAQKmBVQMAAAClhrPqGzduvPLqK62dOw/u34eEhISEhIRUhjSy6jt37uzcsf2ZZ575ytf/5q6770VCQkJCQkIqQxpZ9cFDh555+mnyAiEhISEhISGxaWTV+5aWMJ5GQkJCQkIqW2JG1fv3kZcGCQkJCQkJSUiwaiQkJCQkpFInWDUSEhISElKpE6x6atKGlWhl4/9JXgwh/fjkd5vPf5W8GDNeC0hISNVOGax6w0oURYN+6oFDURRF0aGHyG/AaXro4FANVXds/rTwVLhJfO+eaJd08AdrDlz57oEr3/7xGvW38lj1Pzz/7QNXvjtM2ksokr5UD7x6z8ojuXRYs3GF+a2BlQ3fclwLbBzZ1sLd995191cO/nAu+uHfPiAc/9rXV344F/3T15W55VcDCQmpDCnbqHrNxpVRF7P2EJlVf+u1lZXX9CeMPDWKDj1w90MHo0NiB2d/mxk/LeaOJpEOHrvn4Pek42vub1757oEra77j/Ipr7m+Ona2hVN+8d+XYPZmqW6yIjK1ljGRoQupauPveNWv+LvrHr+gy3PBPcwfnVB/lVAMJCakcqXJW/a3XVqLo4Nrh27WHhoadIf8ZtOo1j+gGc9945sp3D5y83/1Ff7AmR7amUm3YlWMoufZQVHxF6JqQvhbuXbPm71bW/LUuwwf+UWPVOdVAQkIqR0qz6oHVDabsFFbNnDAySJs0+uLKhm+Js4IPjHKN+K6THTGzQ+d7h18UZyylcZIw5laUbTyr1pd5kDYwE6sHNybenHJHFhPv6jsaTOSuvBY/viRSK2/K0KH/+OR3D7S+IR3/xjPDuWthAnwwrX3y/uHYV5qpHh0fJT6TUea6Ab2mVPfeZTQ8UxqpxFTjSHBtLVjpbIgju1oY26rHVAMJCalMyWTVazausF3/hpVoZYW3as4bHjpovYjL5fyt1+KMk95tzcYVdrwuFGPwFfXQJ22uWzHmVrjXGFadVmZBnIcOCnZuMapWl8p8R996bWVl5eDwiELJOH3z3hXNvOtdd9/7nZbWFO+6+95/eP7birXqNfc3T377maFD/8Pz31Y4rm5Uveb+5pXvPvMD5jTVmrSpVN+8d+XYPRu+md4OFSltVK2tBb3OKXFkVwtjW3UuNZCQkMqRDFatsD1uT83aQwoHtZpqlnL+1msrI4NR2e3aQ1zXpjO2NMNTjLlV0/jZrTqlzOlz5uNadcodCUZ+970bVlQD6+/dE43bm2utmrXbu+/98UnJbjVW/Z2W6kz9s4Iy6VZ809PYVq3VOS2O7Goh1aoNn46vBhISUjmS3qpV5vHAoci8Vq12AiGpch59UTUPGUX8bvMxrVo55lYczGzVaWV+4FDa6sCYVp12R1K2Bqseb/ORflTN2bC1VX/jGcWMt/KgKRFYtU7n1DiyqIUN/6Td4z1MXzn4wzndvjNYNRLStKdSWnXqvp4xJ8CLtOqU0fwUWLXjUTWseiyrxqgaCQlJTiWcALfwe72xmU1R8ambCfCUMgsr2ZnuyHzdlDuytGrjKqk5ubbqe7/T4mbOB2dmmgCnWavW6Ww9AY61aiQkJE1K21bGdEA228pE2/jePdExxViBz/mhg/y2Mnm3l2h1vLU/cMhUDGkLm7Dby822srQyK0vF7//S3pHxuuY7srTqHH/S49yqpb+3/sYzmX4dJXXPs6ZNjurRsVWnxZFdLWAHOBLSLKeUP9Zif7kp/iOTeAl29Gtl5j/W0neLbM4H10oWIqz+yr0nc11pwMr/+ZPwXfaLfJm5v7ZSrTcbPrUos7FU+jtKv67mjhiFDz3AF0+uqawd+nda4l9bHbgy2JLN/AbZmu/czf1p1mC4PPitse9qf6qMP0EcZKellMcOXZtcKwstPDypa8FGZ10c2dcC/q4aCWmWU1l+A9xqkRupyFSRFc0p/32ucX+t7O82fK2CaiAhIcWpHFY9kZ+IQkpJ2l+fnqY09b96jd8AR0JCkhKdVXPzjYX/6jISEhISEtKUpnKMqpGQkJCQkJA0CVaNhISEhIRU6gSrRkJCQkJCKnVirPrAgfn7v0leICQkJCQkJCQ2jaz6/ffee/75F8gLhISEhISEhMSmkVVHUXTowP6FhU3e//q/kRcLCQkJCQkJKU6cVUdR9PHFX3ePvHFw/z4kJCQkJCSkMiTRqgEAAABQKmDVAAAAQKmBVQMAAAClBlYNAAAAlBpYNQAAAFBqYNUAAABAqak9CwAAAIASU7sCAAAAgBIDqwYAAABKDawaAAAAKDWwagAAAKDUzJBVn3733cbWX657dv3Djz+27tn1r2/Zcur0MnWhAAAAgBREq27uPrBpe2fT9s5r25c2bl/auH3vxm17NwR7Xw32bgj2bgj2vrZ96Rc7Opt2dDYt7gv2HiIpdFYufvzxjl27nn7h+c4bh0+cCc9euHCyd2b/m0fWv/Ti9p07L3z0EXUBAQAAAC2iVb+0tX3mwpUzF66c+ODS8fdXj5+7dPTM6lu91Td7q2/1Vo+eXT32fv/kSj/8sP/eR5c37OiQFDoTq6urDz/+2C93Lr77wQdnPvzwzIcf7nvjjfh1uLKybfdu/4nHP/zwQ+piAgAAAGpEq34hWDq0/OGh5Q/3n/hg/zvnlt4+s//EuX3H3z904oN9x3r73zl38NTK3rd7+985t//EuZe27zdlXavVapkn2Mf7loHtO3c2t29/99y5JN13//3HT59O3m7b3dq2uMPhFQEAAACHiKb4VHOP/QT4+q2mUfUYppuc78qtl9999+fPrn+nd+bk2feSdN/99x89dTJ5e+K93lMvvnDs+HGb4mUqmO58w3H7zAEAAMwIojc8v+NA/DNmu4+cSn2xcfebjkvj2qs2b2nu2Lv3V2HIpvvuu+/IO++wR/YcOvTyaxsty2ZZSN35yuO1IZb3BQAAYHaQrHp7FqtuveG4NK696omn1h18++hby6fYdN999x089jZ75MiJdx5+4nH7gqWW08aex8gWAADADCKtVW/bt/vIKcu0sXVYm69qmJgckT+t8ShzG+P2fuQ//MY77whp/r779nW7wsEHHv1Jv9833I7hrf35Dq1aJ1eqjHggAACA6UIaVW/r2I+qN+zWWvUg9zTTtfGqPAvYjz75sz1H3th/7G02zd9338YtTfZI563u2kd/Yn8j5Fat09CQoeE0AAAAZUb6Y63FLBPg7ZS1aqVV27+1OcHMptdfX9gW7O2+yaZXXt98/ze/uaHZTI68vnPxFeNadZmteozrAgAAmCLEHvzlnQfsJ8AX9r2dkju1VZ9aXn7sqXW7Dh8W0osLC/d/85svbd4cv/3Z+vVHjx2zvxFyq75iXGKQ58Bh1QAAML2IPfiLO/bZj6o3dd5KyZ3aqq9cufL6li0vvb55+4H9Qnp+0y8eefLJ7Qf2v/rLLa/+4hfmTEpo1cpvWY62AQAATBHSqHr7/t/+9re//e1vrax6qZuSe26rvqL3OUvCM2f+ee2DL25e2NpZktNLjdd/8NDad06cSM1HWQzDLq1Ue04Vx6Ywhtc2p2GXGQAAlB+xm964c7/9BPhmvVXrpmF1b5XnC7mNfZOnw3BTo/HIz598qfF6o72nubfdaO95qdl49Kl1Gzb94p2TJy3z0U04259vzkd3+7ocDFqZP7IsPwAAgDIgdtNbdu8Ldu/bvG3Pxl/ufHXLzpcbO15q7Hjx9e0vN3a+umX3a7/c89ov9/xiW7sRLL2+be/WPQeEr//BH/zrXa32pAqfjbd/9asXXn31B2sf/K8//tH3H3zg+Vdefuvtt6kLBQAAAKTgeET1B3/wr//wj+7a1WqXx7A/+uijs2fPnjhxotvt7tu3byfDvn37jh49evr06fPnz1MXEwAAAFDj3qqjKPrDP7orNmy3mQMAAAAzCKwaAAAAKDWFWHUM3BoAAADIT4FWDbcGAAAA8lOsVSduDcMGAAAAxqN2cP8+h+lf/sv/NpL4/Of/8POf/8OnnnrG7bWQkJCQkJBmIdVkZ83Dv/pX/5188I+/cM8ff+GeQ4ffdHstkHD+/HnqIswikJ0EyE4CZCchkX0SVh0Dty4ORBEJkJ0EyE4CZCeBwKpv3f4Ubl0QiCISIDsJkJ0EyE4CgVVHUXTlyvXYrWHYbkEUkQDZSYDsJEB2EmisOoqiX//6YyxdOwdRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJ4HMqqMoOndu5dy5lT/+wj1uLz3LIIpIgOwkQHYSIDsJE7LqGzc+SV7Hg2k2ub30LIMoIgGykwDZSYDsJEzCqm/c+ORf/Iv/Zssvd8Vvv/An9za3bHd7ORCDKCIBspMA2UmA7CQUa9U3bnwS+/Shw2/+m3/z38cfnTu3kryOoijwarW6H6qzCf16reYFbstWYfJHkbE6gBp0XiRAdhIsZTf3JOhnskJu1aFfh1U7A1ZNAjyDBMhOgp3s5o4d/UxmCrTq2KRjn46i6It3f21p6fDS0uH4td0cOKw6G7BqEnLLHnho5tnRyA4xi2Us2cVP0c9kpSir/h/+xz+LTTr5W6xDh9/83Oc+/7nPfT6KopMnl//tv61bZAOrzgasmgRYNQmwahJg1SQUZdXK6vzi3V/74t1fO3lyOYqif/fv/ig+KNZZ4NUSPB9WnQmV7CqBh+/j14Ffr9UGBxFCY6Bs7bK2g0fPYeOOmzV7qMZqz36AGlEhy64RUyH7AKa3GdQVeps0LGVPehLzp4os0NpVTNSqz5//6Pz5jz73uc/Pzf8fb731q/ggV2eBxwbTII4QPNaMY9W8wrDqMdBaNa9t6HtDZYWVPGlEwlVDyrLfzGI5vNPJHrsDepusWMrO9yTGT9HaLSiVVcs2gQnwbIxl1XqPAHbordpyRlDoyEK/zn8z9OuoFYlxZmJHH6K3GRPXVo3WbsVErVrJqM4UkYLgycZ4E+Ch4WxggWECPJQPMgs8aqsWZgzVU7cgg1UrZEdvMy6OrRqt3Q5YdaWAVZNgZ9WxXwxbs2FUjVZvh51naGRHbzMuRVg1VE+lTFatMQ5Uoz0q2cVQgFU7x8qq+fd8rSjcBZWQipVnaGVHbzMmrifA0dqtKJVVx7HCVy+CJwvpi6axprBqp1hbtbDtm7NqeT8sN85GFEgYPEPoRJSyo7cZDyvZVdWg+xSt3YZyWXUk/K1WgMmRbGhkZ5aDvACjaudYrlWPqqHuh8ppWnEjLP58xYS2k+HFNMiO3mYMLGXX/RWu8lO09lTorRo4BLKTANlJcC07rNoKtHYSYNWVArKTANlJcCw7nNoOtHYSYNWVArKTANlJyCl76NfFlTdMvVqA1k4CrLpSQHYSIDsJkJ0EyE4CrLpSQHYSIDsJkJ0EyE4CrLpSQHYSIDsJkJ0EyE4CrLpSQHYSIDsJkJ0EyE4CrLpSQHYSIDsJkJ0EyE4CrLpS9Fc/pi7CLALZSYDsJEB2EhLZYdVVAFFEAmQnAbKTANlJgFVXCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UlIt+rQr4/x763DqklAFJEA2UmA7CRAdhKMVh369VqtVqvBqqcFRBEJkJ0EyE7C9Mke+vW6H1KXIidaqw79eq3uh1EUeHmtut/vH7Kj3+/nuZnAq9W0VRL6dcOnzgn9+ji65YSNIieyj1f7s4Zz2YENxciumkYMPKnrSMYxZioYPAW2dq4HN3bnCYlRWZwReFNcR+kT4PmtutvtfmpHt9tNyZcXW6iiCVt1+uU43Zgj8UvfvZuzUeRE9pJYtVFNepzLHkV8U9feKBcP0z9yyIZb2VX9uOepOve6H1otDI63dlh6imjtwwefuh+GYdyKwzBkD5u+aWr4JenB8jMJq+50Orfs6HQ6+izjamNrJfD4A3aPYWMjKpHJqrkWNXjjvhWxUeREdmMR5Q8LiouSO7V72eOmPbi/uOGrbpYb7InRUH3cyx5FmUbVXqAfW9f9cAas2oHsbLsdNfWBsOzx0TCHFVWyarauKuPT0WSsut1u37Sj3W7rMtT0zWyXVmar5r87smrHxWWjKJZ9aWlpfn4+DMP5+flE5+TI0tKSWfZSWLX84Jw+6zVRCpGduT/LB5OC23/pcCy7bLtsl6+2avZI4AkHZsCqnbR2jqQWNC05g1WPKqQKi9WTsOpWq3XNjlarZSiFUmy2FxucxIYcU3IxC/Y0MWtmMiyZ7ZJCWCZeSb0AACAASURBVMyQm7HkZ7fFUI8bUbFWHcvebrfn5uaWl5fn5uYSnZMj7XbbKPug9pnb50Z64hBCJ5GmRljJhocV6xRy3bNHxBKK9SX3njV1WXLgXHah/7F8Mpllq3Ygu2ACcXQqpsXVo7vZtGonrT2K2MCMW7C2d840qlZ/ZTqZhFUvLi5etmNxcVGdnaGvYj4ahBU3z6zZpcC9kc9jLhb6PjNo146queH9sCSe5puFwUZRInur1Ur+qzyilX14I6wtClOu5lG1skaEJ6vBmT4z1SWGnsm7uRKKf7OgqBV+bsONtTmXneteLI16wvsmS4Bj2ccaVWtnwAefTb9FSDiV3XI1mn8Kz2TVwz7JtA9wGsJmElYdBMElO4JAcyHDeIEZVgtdMf8hm4cUQ6P6Nsw1GqxaLh+bz+Sma9kociB7ykyspVVraiTDrK7pIkIJhSsa68jZirdz2aVNTmnNR97IMQM4ll05qpZfq8+OhqPq0aP9LFi1o9aetp9e2PRjb9X6fR5Tt449CatuNpsX7Wg2m+rs7EfV+k3ho5eadpE8emluV2/Vim+JVj2ZRsFGkQPZpXsex6q1NWLxQG2xoUy4pOLZwvAM5mjK2LXsQgdj6G9GH8+aT0fOZVeNqv0MO8CHVl3XjgiqgfNORkJaSmDIYNXxPFNdUwmw6hjWqhcWFi7YsbCwYCiF7Vq15ntGZ1VlpyrDFFm1C9kLtepRjlqnsdj6XTardiB7hg3vA/mmqctxRwGyM9PWmlH1cIeSYa069L2kyVWwZpx3MilDar57sLfq0aPTjFj1eLBW3Wg0VuxoNBq6DOWp1OSwZr1Y/Ng8F6rMUP7IegKcLQvNBLgz2XNatb5GTOcll0vb+m1r1ZOaAHcgu7VVa2SbFZy39iiKUv9Ya/gyPk2x62xkLkH1rdqd7CyORtXK89nzpqp2JmHVvV7vCTt6vZ4+S3kaUNjlJG7mUmwqYh6NubxCvz58I34UeOzmMHHHt2HDFZOLRatgNwXpXqfDRpET2VOt2rxZ21Qjw7EH/z32ftPzl0uot2pFzTJvc+lfiOzCghu7dZKZRZqmzsY1TmVXD+1GSouT2hZD5hkYVTvq2wXHZa1aDHlY9XT8y1pCPAlKx7UaMOcYJmO5rBTdvy6L0emqDU3JlyRTS+nu3Vu1E4xWLQoiH0mvEbECmPu1cuoMVi1cUvGney6s2hVc++QeKtk/F5KZoSXrYn6MWjuqHq5bm9SXmCYzsKSw3wBPQnlo1ap4zzRbHsGqUynhP9dBWjUTunjZfkk/z1pw+vR6aSib7DPChK06bQe4VU4VwLHshjWEsR5CzaNqzRPwFDA7Vj25BWPCy5fNM8a36gxbq+gpm+wzAmQnAbKTMDNW7Wivbw4mYTVliyJ61SdC2WSfESA7CZCdhOpbdTLjUc4BmVvKFkWwalAckJ0EyE5C9a16pkAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UmAVVcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ2EAq26v/oxEhISEhISUv5UlFW7zRDY0McDLwWQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UmAVVcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ0EWHWlQBSRANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJgFVXCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBINVB15tRN0PM+ULqyYBUUQCZCcBspMA2UnQWnXgMfYceFndGlZNAqKIBMhOAmQnAbKTYDsBHnjZvJq16n6/f8iOfr8/zk1YFTL069knB8Yn9Ou1mhdM6GpD2ChyInvgEdzF1OFcdmBDMbKHfl1q8tzAZXSaBRUMnqJa+0jk0K/bddWpJ3JTw3YVFHgZKm2MMo/LJKy62+1+ake3203Jl5deKNGErTr9clyVM0fil757N2ejyInsJbFqo5r0uJVdZwLKu2UCYnLPoSXBreyqXt3zVF193Q/Vji5gcco04ryTiRm5nnWnk1tghS0rnsqM389a5rGxs+rsNsdadafTuWVHp9NJKQRXCnFePuvzREbE2shk1dxD1+CN++plo8iJ7MYiyh8W1GBL7tTuZRfQyRr69eTwhGeNykAxsmcYVXuBfmxd98MZsGpnso+00krKDF/NZLJaoYIsJku4btyuzC6wsGrZIi1grbrdbt+0o91uG0sht/vAq40Ol9iq+e+OrNpxcdkoimVfWlqan58Pw3B+fj7ROTmytLRklr0UVi3PLRU+25QN57JzWN5suZ5eJoFj2eX+NlFda9XsEanfnwGrdtXaE6k0mjGHU1TNOioWssrw9QxldkGKVQ9ab/ZekbXqVqt1zY5Wq6XJT2uLbAc1OIkNOUYqMQv2NDFrcVpRiOL4dDFDdgZNmN0WG0DcRIq16lj2drs9Nze3vLw8NzeX6JwcabfbRtkH3svcPhMvvCAmiTQ1wko2PKwYHMp1zx4RSyjWl9x71tRlyYFz2YUSW6/bVdEZ9DiWXeha4+hUTIuPBlKwajetfRT0rIb8oFUxllWSz6rtqyxTmV1gsOpBrzZeW2OtenFx8bIdi4uL6uwM9818NAgrrlK5J2PNG/k85mKh7zODdu2omhveD0viab5ZGGwUJbK3Wq3kv8ojWtmHN8LaovCHAeZRtbJGhCerwZk+M70lPtaYvJsrYeLEzCWEWuHnNtxEk3PZ+Xu1aTqzZ9TOZR9rVK2d+hx8VsEqKbiTSTAMVs3oxk+6epKKYnF6tjK7wPTHWnlCn7XqIAgu2REEmgsa5pqZPkous2LMPTwsnRd/ZujyDFYtl4/NZ3LTtWwUOZBdujFeHUur1tSIpbmkXUQooXBFYx058zfnsrMFNLYcYTZhtnAsu3JULb9Wnx0NR1ejR/tZsGo3fXvdD/y6uJMnkU/oAbKNqs37uTPt9mYKkrXMLtBZdd5LsVbdbDYv2tFsNtXZ2Y+q9ZvCRy81z2VeYO689Vat+JZo1ZMJWTaKHMiuDJOsVq2tkWE1mEwmfUOZcEnFs4XhGczR7gbnsqvvzQg3YTEbOJZdNar2M+wAH1p1XTsiqAZuZQ+8gcXxK1qRsBbMTnO6s+psJFlnLrMLNFatNrMMl2atemFh4YIdCwsLmvyyrFVrvmd0VlV2qjJMkVW7kL1Qqx7lqG1c6U5dOqt2IntS9kztZmLrLCXBsezMlPZgYKQaVQ87aMNadeh7SZOrYH0U0dpHthd48pOOtFZtpiCrFt03Q5ldMInfAG80Git2NBoNXYaaCXnDerH4sXkuVJmh/JH1BDhbFpoJcGey57RqfY2Yzksul7b129aqJzUB7kT28Qo3y1btTHalwTJWPXwZn2ZY26z7QfWt2pXsqgcg9jXTtF2PquMu4qmUReq6/Ld3GcrsgklYda/Xe8KOXq+nz1Ke4RN2OYmbuRSbiphHYy6vcPQHquJHgcdKL+5YMGy4YnKxqDR2j5PudTpsFDmRPdWqzZu1TTUyHHvw32PvNz1/uYR6q1bULPM2l/7OZY+0Ts0WmuuGZnwCPLfs6sHaSGlx2GQxZJ6BUbXD1j4ww5FinHz89JhLq7Z2VPFE6zI77tun41/WEuJJUDjupgPmHMNkLJeVovvXZTE6XbWhKfmSZGopVeLeqp1gtGpREPlIeo2IFcDcr5VTZ7Bq4ZKKP91zYdWu0EzvyD2DLhqqTzE/Rq0dVQ/XrUcTnBZUsFKKkJ1Z92WPqeTLPAFurgNrp5aKY13mmbTqPJBOD07o4mX7Jf08a8Hp0+uloWyyzwgTtuq0HeBWOVWAoq2a8WKVetlG1cLTeZqzixcyPXZlKLMLZseqJ7dgTHj5snnG+FZtsaGsPJRN9hkBspMA2UmYGat2tNc3B5OwmrJFEb3qE6Fsss8IkJ0EyE5C9a06mZoo54DMLWWLIlg1KA7ITgJkJ6H6Vj1TIIpIgOwkQHYSIDsJsOpKgSgiAbKTANlJgOwkwKorBaKIBMhOAmQnAbKTAKuuFIgiEiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CbDqSoEoIgGykwDZSYDsJMCqKwWiiATITgJkJwGykwCrrhSIIhIgOwmQnQTITkKBVt1f/RgJCQkJCQkpfyrKqt1mCGzo44GXAshOAmQnAbKTAKuuFIgiEiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CbDqSoEoIgGykwDZSYDsJMCqKwWiiATITgJkJwGykwCrrhSIIhIgOwmQnQTITgKsulIgikiA7CRAdhIgOwmw6kqBKCIBspMA2UmA7CTAqisFoogEyE4CZCcBspMAq64UiCISIDsJkJ0EyE6CyaoDrzak7ofZ8oVVk4AoIgGykwDZSYDsJGitOvTrXjB6ndWtYdUkIIpIgOwkQHYSIDsJdhPgoV+v1RLntoG16n6/f8iOfr8/zk0MCTzDE8UYzxt5yC6ZC9gociJ74BHcxdThXHZgQyGyBx7fS4jvhXMH0cHMQHJUMXaK6GQEiUO/rpGOP9fY48d9sA1ewF/T9MXJWYjAJKy62+1+ake3203Jlw8JQbYJW3X65TjJmCPxS9+9m7NR5ET2kli1UU16nMseRXxTN9+o/ZnVoijZba06DENTM9T7zXRTRCdja9VhGIz6cd3zkcFRQ7+ur83Ar8cRpL286bmtaGysepxekbXqTqdzy45Op5NSDE6pwOMPmJ+xciPaViarDv366OTBG/c+yEaRE9mNRZQ/LMjZS+7U7mWPmzb3jK+5WfbEWcOt7MJQqu4H8thK6H3Mnc0sWLWrTibNqjmLDf16re55Vj2Ayc5Vz7ZcDza8ail6G4NVj5ruGPbHWnW73b5pR7vd1mWoUYvrqUps1fx3R1btuLhsFMWyLy0tzc/Ph2E4Pz+f6JwcWVpaMsteCqvmHnM0R0gpRHbm/rRdRUkmPYhwLnsUmUbVwiew6shdazda9WASMgxHx+MXFssOgSf22UIdMs/DXGUNnCUMQ+Y9ZZ9jNQFufKxXw1p1q9W6Zker1dLkp7VFthcbnMQ+HvOVxmXBniZmLW5+l564Q0WG3DwkP7utiH8vKGA6hY2iWPZ2uz03N7e8vDw3N5fonBxpt9tG2QdewNy+ejVHUF2USFMjrGTDw4p1Crnu2SNiCcX64pstX0pXHalz2YVHEd2TCeV8XAlwLnvENJC673u1ePA26l5g1VFBnQzvtIx0XPSHoc84ZhIWnNK8OduOqofT30l+w2uyeZOOEGz/rjrr4ztr1YuLi5ftWFxcVGdn0Ij5aFAt3Dzz6B1X53wDkM5jLhb6PjNo146q+YnIQUk8zTcLg42iRPZWq5X8V3lEK/vwRlhbZKRJH1Ura0QZhIE/Cj/pscbk3VwJk46WuYRQK8LDupPIcy67tMlFWUzpOWrGfNut7MpZRLZ1wapjiuhk1KNq9WxS0smw30teC6rbjqqFrKWi0DMJqw6C4JIdQaC5hGGumalOed1OMeYeHpbOG9W0fvOhzqrl8rH5TO5hjI0iB7KnzMRaWrWmRiwXgNIuIpRQuKKxjpytQTmXXRoNaK1a+8Q5AxQgO9+ZDwJ30EwGK5fDzgNWHbnrZFSBmW9z9yjqM1i1TeZUEaazau4eck6AN5vNi3Y0m011dvajav2m8NFLTVV4gbnz1lu14luiVU8mZtkociC7dM/jWLW2RobVYGr76RvKhEsqni0Mz2COdje4ll0IOE38ydZciu0vk8N5a48iYXimWrYengCrjtx1MrY7wAen889Koe/xET/GBLjmsqnPDJNDP6rm/Cxzi2OtemFh4YIdCwsLmvyyrFVrvmd0VlV2qjJMkVW7kL1Qqx7lqI0Gi63fZbNqB7LbbniX9J9hq3Yg+7BXr/uhYjooioSOG1YduetkMlh18tnoa8J6srgjiR90Cp2H0LtJW4p8v17zPI/erCfxG+CNRmPFjkajoctQHTum9WLxY/NcqDJD+SPrCXC2LDQT4M5kz2nV+hoxnZdcTl5XkIW2sepJTYA7kN3WqiUxSrYxvmict/ZMwKojd51MqlWPjgzP5s4ZGXQo/eX0qIdIqRG+HMx6uVfEFuCsTMKqe73eE3b0ej19lvI0oLDLSdzMpdhUxG7rE3YYsbv8+NVOdnOYsNBh2nDF5GKx0s9Ot+lep8NGkRPZU63asOFL1kF4gPE4veRpx/T85RLqrVpRs8zbXPoXIju7s5HXRNPCNc871cW57EljYpuNrqeHVUfuWjsbo4PdAZpBAL9AYbmibJ67k4shdEjDC5O69ZT9y1pC9QiBEIvJ/nKBYTKWy0rR/euy4GbAFA8Kgy9JppZSy+6t2glGqxYFkY+k14hYAcz9Wjl1BqsWLqn40z0XVu0KzQKUNL4ONeLOAK5lZw2CaVaCbytepmdXJQrpZPiQ1O/7TR31KE6Q1quVGQjPAOwzPNMQyretLC8l/Oc6LIa2U3/xsv2Sfp4n0fTp9dJQNtlnBLeyC/bAGDT3vJdMsOqsWvUAWilct3blbJC8HSwZ2iq6AO5sbpZJ6cwK7x7VsWJ0kmEqpThmx6qJ1/Emc/myecb4Vm27XlsKyib7jADZSYDsJMyMVVOvNEzGasoWRfSqT4SyyT4jQHYSIDsJ1bfqZC2vnAMyt5QtimDVoDggOwmQnYTqW/VMgSgiAbKTANlJgOwkwKorBaKIBMhOAmQnAbKTAKuuFIgiEiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CbDqSoEoIgGykwDZSYDsJMCqKwWiiATITgJkJwGykwCrrhSIIhIgOwmQnQTITgKsulIgikiA7CRAdhIgOwkFWnV/9WMkJCQkJCSk/Kkoq3abIbChjwdeCiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CbDqSoEoIgGykwDZSYDsJMCqKwWiiATITgJkJwGykwCrrhSIIhIgOwmQnQTITgKsulIgikiA7CRAdhIgOwmw6kqBKCIBspMA2UmA7CTAqisFoogEyE4CZCcBspMAq64UiCISIDsJkJ0EyE4CrLpSIIpIgOwkQHYSIDsJNlYd+vVareYFWfKFVZOAKCIBspMA2UmA7CSkW3Vs1LDqqQBRRAJkJwGykwDZSUiz6tCv1+qeV89j1f1+/5Ad/X5/7DuJoijwarW6H+rvRP+pc0I/s2YOYKPIieyBR3AXU4dz2YENxcge+nWpyQee1HUMhzApVDB4im/t5l6Hq4zAU4g+uW5+gpitOvTrtbofjmE7rFV3u91P7eh2uyn58jUjVMmErTr9cpxmzJH4pe/ezdkociJ7SazaqCY9bmXXmYD6btmIKIseE8Kt7KpO3/O0TqBydAGLU6YR552MhLHXCf060+vKD1GKx6pKYLLqxIpyWnWn07llR6fT0WcZ92BsLQQef8DonfkRG1Amqx489XBv3PsgG0VOZDcWUf6wIGcvuVO7l11AK2vgjQx6nC0l000xsmcYVXuBfmw9GOJUsD6Kbu369i6oXfdDWDXfF+a06na7fdOOdruty1BTBravKrNV898dWbXj4rJRFMu+tLQ0Pz8fhuH8/Hyic3JkaWnJLHsprJp7zNEcIcW57Bz6mxVaYLmeX4rHseyy7Sbaaq2aPRJ4woEZsGp3rZ1t5Uk3omj6w0H1oEpm3qr5PiCnVbdarWt2tFotTX5aW2TLNjiJDTmm1GIW7Gli1sxk2GheQQxhMUNuKpKf3RabTxzVxVp1LHu73Z6bm1teXp6bm0t0To60222j7IOgYW6fG8KJQwidRJoaYSUbHlasU8h1zx4RSyjWl9x71tRlyYFz2YUS61qJ8FnJHmAKx7HsgrPG0amYFh8tYsGqnbV2TivmiV/Va3tBlKg942vV+lkd64bHWvXi4uJlOxYXF9XZGToh5qNBtXHzzNyTseaNfB73nOIzg3btqJob3g9L4mm+WRhsFCWyt1qt5L/KI1rZhzfC2qKwpcM8qlbWiDIKAz9+JVu12an5EiYtl7mEUCv83IabqHYuO3+vhqbD9HCzZtTOZR9rVK3tKwefVdyqXbV2XmC20cvTk8PxNju41mZVHax+AiXnqDoIgkt2BIHmIoa5ZqZwQlcslJzJQ4qhUTdnuFeDVcvlExcQJtN62ChyIHvKFKulVWtqxLJVpV1EKKFwRWMdOZsxdi47W0BjyxEGFZXso7Q4ll05qpZfq8+Ohi4yerSfBat209rFZi4vFzKdeDJfNxxcw6pH5LTqZrN50Y5ms6kvgd2oWr8pfPRS8yTsBeZb1Vu14luiVU8mZNkociC7dM/jWLW2RobVYAqs9A1lwiUVzxaGZzBHuxucy66+NxFhI9nM7StzLLtqVO1n2AE+tOq6dkRQDYroZORpM3U3MnzFWjasekROq15YWLhgx8LCgia/LGvVmu8ZndXmVqfMql3IXqhVj3LUGrbF1u+yWbUT2ZOypzp1iffFF45j2Zkp7cEqqGpUPZx5NaxVh76XNLkK1kYxsrNIHQvXsOOZJHaJS/ksVTUm8RvgjUZjxY5Go6HLUJ5KTQ5r1ovFj81zocoM5Y+sJ8DZstBMgDuTPadV62vEdF5yubSt37ZWPakJcCeyWxUOVl2E7Gl/rDV8GZ+mdIqhXwTVt+r8sqsGwYrZJPYQuwMGo+q8sFbd6/WesKPX6+mzlOf3hF1O4mYuxaYi5tGYyyv069w2Bm61k20h4oqKYcNVjW9bKTHL7nHSvU6HjSInsqdatXmztqlGhmMP/nvs/abnL5dQb9WKmmXe5tLfueyR1na5QvM3626b3JTgVHb1qpi4RDoycosh8wyMql21dh5jfzmsi/gkWHVeCvoNcCGeFE9e8bOs6gTdzKtixoR9VpaeDZLTVRuaki9JppbSfNxbtROMVi0KIh9JrxGxApj7tXLqDFYtXFLxp3surNoVmukdsQa4ZlxBXzBRzI9Ra0fVw3Xr4Sw3fli0KPRWLUUFrDovJfznOiyGtlN/8bL9kn6eteD06fXSUDbZZ4QJW3XaDnCrnCpAUa2dffhRdxqh+JuiBipn17Nj1cR/djqZy5fNM8a36qlaiC2b7DMCZCcBspMwM1btaK9vDiZhNWWLInrVJ0LZZJ8RIDsJkJ2E6lu1+ANWlaZsUQSrBsUB2UmA7CRU36pnCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2Uko0Kr7qx8jISEhISEh5U9FWbXbDIENfTzwUgDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UmAVVcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ0EWHWlQBSRANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJ0Ft16NdrHF6QIV9YNQmIIhIgOwmQnQTIToLZqut+OGa+sGoSEEUkQHYSIDsJkJ0EvVUHXsaBNAdr1f1+/5Ad/X5/3AsOi6x9ugj9uuFT54R+PY9+Y8JGkRPZ87WCWcG57MCGQmQPPL6XEN8L5w6iI/BqSqoYOwW19tCvy0Kb1I+sxpO6mhkw+jZ7ff2XJucgIpOw6m63+6kd3W43JV9eQ0G3CVt1+uU4/Zgj8UvfvZuzUeRE9pJYtVFNetzKLi09Gbt9NiLKoseEcN7aoyiTVYdhaGqGoV+vZI0UInsUyV103PmEocK/bbw3OVlbf4LRp/YpKQ8OxaK1aqG/yNrkWKvudDq37Oh0Ovos4xKxUgVeTaraAqUUbSuTVXPNYvDGvQ+yUeREdmMR5Q8LcvaSO7V72QW0sgbeKDbj+CiNJhPArexCj1f3A/mRSeh9zJ3NLFi1m9aeMvIVDUivvOKTDFZtPjv104Kx2gE+RifAWnW73b5pR7vdNpZBLgLbV5XZqvnvjqzacXHZKIplX1pamp+fD8Nwfn4+0Tk5srS0ZJa9FFYth1S+jRTOcS47h/5mhRZYrueX4ilEdv2oWvgEVh25kl2hOSucKGRRo+pUym/VUXYXZK261Wpds6PVamW9Pts9DU5iH4+ZGhazYE9T1C/3kfTEHSoy5KYi+dltdVss1qpj2dvt9tzc3PLy8tzcXKJzcqTdbhtlH85BjW6fG8Kxgpgk0tQIK9nwsGKdQq579ohYQrG++M6SL6WrjtS57EKJLfuakj3AFE4RsicNpO77Xq1W97w6073AqqMiZKcfVY/6hTEnwLkxYyHYWnXWXoC16sXFxct2LC4uZr4889Ggxrl55tE7rsfn3sjncbsNfGbQrh1V81U1KImn+WZhsFGUyN5qtZL/Ko9oZR/eCGuLjDTpo2pljQhPVoMzfSZmxMcak3dzJUwijrmEUCv83IYba3MuO3+vhqbD2MGsGbVr2YWnvRi2dcGqY9y3duej6sCz2CEm1rUUTann87dQEqvOajasVQdBcMmOINBcwjCoZ4bVslyKMffwsHRe/JlhEtFg1XL52Hwm14myUeRA9pQpVkur1tSI5XRt2kWEEgpXNNaRsxlj57KzBTS2HKEjml2rdiY7axsD+QfNZLBFeNh5wKojV7Jnt2rTqNr3ajXPD8O0k+XoEqxaqrxyToAzzyXjDD9Yq242mxftaDab6uzsR9X6TeGjl5onJi8wd956q1Z8S7TqycQsG0UOZJfueRyr1tbIsBpMLSt9Q5lwScWzheEZzNHuBueyq+9NRNhDMnP7ygqRPemOlfM7zA4TKHmeFQAAIABJREFUWHXkSnbrCXCLExVTcM6smhTDqFq7wGgDa9ULCwsX7FhYWNDkl2WtWvM9o7OqslOVYYqs2oXshVr1KEetYVts/S6bVTuRPSl7qlOXeF984TiWfegDdT/UzGcOGqtyPlymfL29G9y39oyjak0WtVq9Lo/oZsGqc8FadaPRWLGj0WjoMtSsBRjWi8WPzXOhygzlj6wnwNmy0EyAO5M9p1Xra8R0XnI5eV1BFtrGqic1Ae5EdqvCwaqLkN0aWHVUlOyCVaefbXh8cmzVdHPgk7DqXq/3hB29Xk+fpTy/J+xyEjdzKTYVDU8W8wr9OrcFmVvtZDeHCftKTBuumFwsVvrZ6Tbd63TYKHIie6pVGzZ8yToIDzAep5c87Ziev1xCvVUrapZ5m0t/57JHWtvlCs3frLttclOCe9mHjYltNqMGxnffsOrIhexWc9rqud3BJAcf/Q6sOvQ9P1BXnrZOTdvKHPft0/EvawmrzII0cc/F/nKBYTKWy0rR/euy4GbAFA8Kgy9JppZSJe6t2glGqxYFkY+k14hYAcz9Wjl1BqsWLqn40z0XVu0KzfSOWANcM66iMRhwLTvbDzPNSvBtxcv07KpE8b8BnjaqHkSxJL9q+jLlUUCceB8eU8+E6qsUVu0Qi6Ht1F+8bL+kn2ctOH16vTSUTfYZwa3sQjfM9NVctx0OfypaZ9WqB9BKQWjV8jiaOap+Ws0wqpZmTdKsfaLMjlVPbsGY8PJl84zxrXqqFmLLJvuMANlJgOwkzIxVO9rrm4NJWE3Zoohe9YlQNtlnBMhOAmQnofpWncyOlHNA5payRRGsGhQHZCcBspNQfaueKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UmAVVcKRBEJkJ0EyE4CZCehQKvur36MhISEhISElD8VZdVuMwQ29PHASwFkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UmAVVcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ0EWHWlQBSRANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJgFVXCkQRCZCdBMhOAmQnIc2qA6+W4AX2+cKqSUAUkQDZSYDsJEB2EkxWHXgZ/ZkBVk0CoogEyE4CZCdhRmQP/fq47lcIeqsOvLF9OuKtut/vH7Kj3++Pe8Fhket+qP4w9OuGT50T+vU8+o0JG0VOZM/XCmYF57IDG4qTPfCSrkLXYwfe8DA78ygxuR5nYhTa2kO/nq5Z6NczKT6qq0xk6sOtCp4HrVUzjXUcWKvudruf2tHtdlPy5cNCKOGErTr9clw1M0fil757N2ejyInsJbFqo5r0uJVd1xFp73bcVappx3lrj+E7Xc6q2V5R7lBy9pnTQkGyx1hbtbqhK6vArl6MT1yaAGO6RzKrjsvAdBoZS8FadafTuWVHp9PRZxkXhi1H4PEHjN6ZH9G2Mlk1V5ODN+59kI0iJ7Ibiyh/WJCzl9yp3csuYJA1zyrVtFOI7GJUD20h7n68IAzlz1Tvqkuhrb0AqzaOwUfuZmPo/PBc1aen3uDYmKy6ZnqCTIG16na7fdOOdruty1DTN3M9VYmtmv/uyKodF5eNolj2paWl+fn5MAzn5+cTnZMjS0tLZtlLYdVyFBQeF9lwLjuH4WZLMulBhHPZQ79eq9frklWzfaHCJrTjsWpWTaGtvQCrtuxm+dPUfsNZtcUw3GUD0Fi1bM0ZhzGsVbdarWt2tFotTX5aW2TLNTiJfYpiSqx6XNbNGTC1UPdD6cEsPl3MkJuH5Ge3xdYSV3mxVh3L3m635+bmlpeX5+bmEp2TI+122yi7PLvCTPfwgpgk0tQIK9nwsOKhUK579ohYQrG++DbLl9JVJDmXXSixrpXMyIyrDreyD/v/kahJYxEe0Ov+TsUngn9Ud4xdZGs3DoETOTOtVY9TERaPwOIpxBPgzIEcVr24uHjZjsXFRXV2Bh2YjwYdv2YugOvxuTfyedxalc8M2rWjan4iclAST/PNwmCjKJG91Wol/1Ue0couzq4I0qSPqpU1IjxZDc70me5RfKwxeTdXQrFzVdQKP7fhJrqcy87fq67p5F2lmnaKkT3wanXfT1q63oGFT4S9S7Nh1fllV9iu21F16uDXC2zO4osnhyWZVUsXzlgS1qqDILhkRxAYOiWDVQ9Uk9ftFGPu4WHpvPgzwyOJwarl8rH5TG66lo0iB7JLN8arY2nVmhqxfPhLu4hQQuGKxjpytuLtXHa2gPqWk3eVatopRnaxtxe9hNPbC1KXQitXI4W19igqZluZAcWTsOrhWDgW+nXlijjNDnB5FXjsn0BpNpsX7Wg2m+rs7EfV+k3ho5ea4Eo2jxh28KitWvEt0aon84DNRpED2VVtNLNVa2tEXAVUkb6hTLik4tnC8AzmaHeDc9nV9yaQe5Vq2ilGdra3D0x/5VPdcbOZolp7FEWWjqePizGsWp6xE7NWlyl9HO7WuY2/VqZdYkyHteqFhYULdiwsLGjyy7JWrfme0VlV2anKMEVW7UL2Qq16lKO2XVts/S6bVTuRPSm7sd3kXaWadoqRncXWqnUj68qNqKOoYNltrNo8j5FFc+lqQeAJa3a2QUU4qs4Ha9WNRmPFjkajoctQM643rBeLH5vnQpUZyh9ZT4CzZaGZAHcme06r1teI6bzkcmlbv22telIT4E5ktytc3lWqacet7BZ/08ObgX7ZOqaqm/4Kae1DNE2YPZwynBJ2sRirUT+IMm06zlJwd0zCqnu93hN29Ho9fZbclqQoiqRdTuJmLsWmIq62+R1G3BZkbrWTXQUQd3wbNlwxuVhsK2NnM3Wv02GjyInsqVZt3qxtqpHQ9zi9mMGv8QFIMUq3smpFzTJvc+nvXPZI2yEZNsplXqWadoqQncdmVB148d97zKRVO5dd43iBZ+XUWTU3dMys0dtkWQmrdojw5KvYEFD3A820vW7mVVEXbDUpNjQPTldtaEq+JJlaSjW6t2onGK1aFEQ+kl4jYgUw92vl1BmsWrik4k/3XFi1KzTTO1JHlWOVatop/seoU6160IpmdgLcOWojHgV5Sjxms2rloFqxhSY+ZM4YVu0Oi6Ht1F+8bL+kn2ctOH16vTSUTfYZgdaq2X5+ZifAC0D92MNsR1IvlFk9rkp5G4cdAqn7kot9WJsdqyZex5vM5cvmGeNbtcWGsvJQNtlnBMhOAmQnYWas2tFe3xxMwmrKFkX0qk+Essk+I0B2EiA7CdW36mSyopwDMreULYpg1aA4IDsJkJ2E6lv1TIEoIgGykwDZSYDsJMCqKwWiiATITgJkJwGykwCrrhSIIhIgOwmQnQTITgKsulIgikiA7CRAdhIgOwmw6kqBKCIBspMA2UmA7CTAqisFoogEyE4CZCcBspMAq64UiCISIDsJkJ0EyE4CrLpSIIpIgOwkQHYSIDsJBVp1f/VjJCQkJCQkpPypKKt2myGwoY8HXgogOwmQnQTITgKsulIgikiA7CRAdhIgOwmw6kqBKCIBspMA2UmA7CTAqisFoogEyE4CZCcBspMAq64UiCISIDsJkJ0EyE4CrLpSIIpIgOwkQHYSIDsJsOpKgSgiAbKTANlJgOwkwKorBaKIBMhOAmQnAbKTAKuuFIgiEiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CWqrDv16TYUX2OYLqyYBUUQCZCcBspMA2UmwHVUHXhajhlUTgSgiAbKTANlJgOwk2Fl16NdrdT/MkC9r1f1+/5Ad/X5/nJsYEng1fTFDv2741DmhX8/2cOMENoqcyJ71EW02cS47sKEY2UO/LjX5wJO6Dt3M49gTkVODY9kZIb0g6W/YWmDsJ/TrXEXwzjThPn6y2Fh1dqPmrbrb7X5qR7fbTck38Ng4EEo1YatOvxwXp8yR+KXv3s3ZKHIie0ms2qgmPW5lz7z8xAZFWSSZBG5l57uWgZqe4mAc9CpHF7A4ZRpx3MkMVBo8DTGaDWxZUHHoRmmPSpUT3sKqx+qtWavudDq37Oh0Ovos47phvTHw+ANG78yPKEQmq+aedwZv3PsgG0VOZDcWUf6wIGcvuVO7l13AIGvgVbFbsqMY2TOMqr1Abxh1P5wBq3Yge6xSonDyVuu+sqwVFZon1arHGVJHvFW32+2bdrTbbV2Gmr6Z66lKbNX8d0dW7bi4bBTFsi8tLc3Pz4dhOD8/n+icHFlaWjLLXgqrltvgmK2yKJzLzmG42ZJMehDhWHbZdhPVtVbNHgm82XCQAmT3fGFiO/nEFOXa56QSdQ3uSLPqcfsC1qpbrdY1O1qtliY/rS2yljg4ia1BpuxiFuxpYtbMQ10y2yU1BTFDbh6Sn90WQz2O6mKtOpa93W7Pzc0tLy/Pzc0lOidH2u22UfZB/XPLSVEUqQQxSaSpEVYydl1KUEWue/aIWEKxvuTes6YuSw6cyy6UWNdK3DegqcKx7IKzxuIqhnejRSxYtSPZ6/U60014QTTqGpKOpO6HwkG1vuJydlUwW/X404ysVS8uLl62Y3FxUZ2dob9iPhpUJDfPzD0Za97I53FbFXxm0K4dVfMTkYOSeJpvFgYbRYnsrVYr+a/yiFb24Y2wtshIkz6qVtaI8GQ1ONNP9o3UpMcak3dzJUycmLmEUCv83IYbq3MuO3+vuqYjPUdVsovS41j2sUbV2pHd4LOKW7Uj2eueV2e3ADAL13LL5ubKlVQyDoxWnWNBkLXqIAgu2REEhk7JYNWDQsrrdoox9/CwdB5T/ep7Nli1XD42n8lN17JR5EB26cZ4dSytWlMjlq0r7SJCCYUrGuvI2Yq3c9nZAupbDv8cVe39ryocy64cVcuv1WdHw1H16NF+Fqzanez8/0axGXiDMffomvyytiK/SgaByarzdGSsVTebzYt2NJtNdXb2o2r9pvDRS83TmBeY71lv1YpviVY9mZBlo8iB7NI9j2PV2hoZVkPqcpRxQ5lwScWzheEZzNHuBueyq+9NQLbmcm22KxzHsqtG1X6GHeBDq65rRwTVoADZB11vshVv2PCHs5M+2/9jVC2Rpx9jrXphYeGCHQsLC5r8sqxVa75ndFZVdqoyTJFVu5C9UKse5agNL4ut32WzaieyJ2U3thtJ/xm2ageyC+M6zah6OGgzrFWHvmcY9U09xcjOWXUUjWJzNBk+6uYxqnYHa9WNRmPFjkajoctQ80cphvVi8WPzXKgyQ/kj6wlwtiw0E+DOZM9p1foaMZ2XXC5t67etVU9qAtyJ7HaFk8Qo2cb4oilEdqUBMFY9fDka/mmo+0H1rdqB7KFfH/z9+nB5mvklFE3EY1TtDtaqe73eE3b0ej19ltyWpCiKpF1O4mYuxaYi5tGYy2v0yCZ9FHjs5jBxx7dhwxWTi8W2MnY2U/c6HTaKnMieatXmzdqmGhmOPfjvsfebnr9cQr1VK2qWeZtLf+eyR1qnNmyU0zzvVBensqv7fXEgx6+lWsR0BevDcWvnVIo7DGbrUU1u0xhVO6Wg3wAX4kmuw8GzrOoE3cyr4jGMfVaWng2S01UbmpIvSaaW0nzcW7UTjFYtCiIfSa8RsQKY+7Vy6gxWLVxS8ad7LqzaFZrpHcnBQ424M0AxP0atHVUP162Hs9z4YVEnjPQeBKtxOinwpL+EnRGmzKrzYDG0nfqLl+2X9POsBadPr5eGssk+I0zYqtN2gFvlVAGKsmppalN+7AlGf7puWHqo5jPS7Fg18TreZC5fNs8Y36otNpSVh7LJPiNAdhIgOwkzY9WO9vrmYBJWU7Yoold9IpRN9hkBspMA2UmovlUncynlHJC5pWxRBKsGxQHZSYDsJFTfqmcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ0EWHWlQBSRANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJgFVXCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSSjQqvurHyMhISEhISHlT0VZtdsMgQ19PPBSANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJgFVXCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UkwWnXg1RK8IFO+sGoSEEUkQHYSIDsJkJ0EvVUH3sigQ7+e0a1h1SQgikiA7CRAdhIgOwlaqw68Wq3uh8O3oV/P5NWsVff7/UN29Pv9PDcjlJkn9OuGT52TVTA3sFHkRPbAI7iLqcO57MCGQmQPPL6XEN8L5w6ig52AZKli7BTf2vWax4PGdCbX0U8MrVWHfl206iy3z1p1t9v91I5ut5uSLx8SQokmbNXpl+MClTkSv/TduzkbRU5kL4lVG9Wkx63suu5IfbdMRFSwfzLivLVHUSarDsPQ1AxDv16aFuqSQmSPIkbq4QtZQStNTU9X04thrZpRJatR81bd6XRu2dHpdPRZxj0YW4zA4w8YvTM/om1lsmpOwsEb9z7IRpET2Y1FlD8syNlL7tTuZRfQyso2wQlPG5UAt7ILT0h1P5AfmYTex6z2LFi1i9Y+FDLwhnINjoR+fajw8LNYU90cxuCJduasWtBjfKtut9s37Wi327oMNX0zu6JeZqvmvzuyasfFZaMoln1paWl+fj4Mw/n5+UTn5MjS0pJZ9lJYtfykmP3ZsVCcy86hvVnj4+AMUIjs+lG18AmsOnIjeyzkwJcDr1b3/eERL4iSI4yUWumrKnkU6a1a2EiWeV8Za9WtVuuaHa1WS5Of1hbZ7mpwEvt4zNcvlwV7mpi1OKsoPXGHigy5DfP87LYi/r2ggIkaNopi2dvt9tzc3PLy8tzcXKJzcqTdbhtlH3gvc/vcRkNWEJNEmhphJRseVowN5bpnj4glFOtLnkCrqcuSA+eyCyXW90uynDPk1UXInjSQuu97tVrd8+rCWG8IrDpyI/vAiwfj6GHH6Hl1/gisWmnVuWccWateXFy8bMfi4qI6O8N4gflo0PFz88yjd1w/xr2Rz2MuFvo+M2jXjqq54f2wJJ7mm4XBRlEie6vVSv6rPKKVfXgjrC0y0qSPqpU1IjxZDc7041eyVZudmi9h0tEylxBqhZ/bcONszmXn79WwFlrqyYaicSu78LQXw7YuWHWM69Y+MGZGe25CV5gcH3xDTxUlj6LJWHUQBJfsCALNBQzDBaZgQlccKcfcw8PSefFnhvs0WLVcPjafyfWgbBQ5kD3lDwEsrVpTI5YtKu0iQgmFKxrryNmKt3PZ2QIa9x/rG90MUIjsrAMP5B/IOpiiHXYesOrIjeyJkIMZb25/2Sh4Maq2+mOtzAMQ1qqbzeZFO5rNpjo7+1G1flP46KVmi60XmDs7vVUrviVa9WQaEBtFDmSX7nkcq9bWyLAaTO0q/ZlRuKTi2cLwDOZoxti57Op7U3yKUfUAZ7KzxiHP7zA7TGDVkRvZR4IO16RH28o8P1nCxqha/2tlnKPl+LWyhYWFC3YsLCxo8suyVq35ntFZVdmpyjBFVu1C9kKtepSj1rAtZnfKZtVOZE/Kbmo3WKt2K/vQAAbWoNB+0FiV8+Eys2DVjvr2uh8OBtCBN9zCHcRj7Hgug7dqlpl5PJ3Eb4A3Go0VOxqNhi5DdeyY1ovFj81zocoM5Y+sJ8DZstBMgDuTPadV27iJpnZtVmNtrXpSE+BOZLcrnCjGzPRaAwqR3RpYdeRG9sG2MmZY6AlHkh3gxuF0xQfXk7DqXq/3hB29Xk+fpbwLXdjlJG7mUmwqGp4s5pWsksgfBR67OUzc8W3YcMXkYrGtjJ1u071Oh40iJ7KnWrV5s7apRkLf4/SSpx3T85dLqLdqRc0yb3Pp71z2SOvUKW26ch2UCfeyDxsT22xGDYz3Xlh15EZ2XsjQr9frdaFbr9erKWUWpuxf1hJWmYXaizsu9pcLDJOxXFaK7l+XBTcDpnhQGHxJMrWU7t69VTvBaNWiIPKR9BoRK4C5XyunzmDVwiUVf7rnwqpdoZneEWtA+3dwM4Br2VlvZZqV4NuKl+nZVQnXsstCKo8YF6/kcVzlmDKrzoPF0HbqL162X9LPs3iaPr1eGsom+4zgVnbBWRmD5p73wuFPaOmsWvUAWikKsGob+GnPWNwwlP4AorLPrLNj1cQLeZO5fNk8Y3yrzv3ngpOkbLLPCJCdBArZh6Nqmw6lxB1FHmbGquk3x06iBZWt86JXfSKUTfYZAbKTANlJqL5VV3tWRKBsUQSrBsUB2UmA7CRU36pnCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2Uko0Kr7qx8jISEhISEh5U9FWbXbDIENfTzwUgDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSYBVVwpEEQmQnQTITgJkJwFWXSkQRSRAdhIgOwmQnQRYdaVAFJEA2UmA7CRAdhJg1ZUCUUQCZCcBspMA2UmAVVcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ0EWHWlQBSRANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJMFl16NdrQ7wgW76wahIQRSRAdhIgOwmQnQStVQceY9DcGytg1SQgikiA7CRAdhIgOwk6qw483psDr1ar+6F1vqxV9/v9Q3b0+/08N2MsZOjXs91CPkK/nn0uIjdsFDmRXWwHQIVz2YENxckeeElXEfp1ZQQE3vBw4NX0TK7HmRjFyC7rzFSCzOjD0K8bVVZ0YcacuRLZ9n5CjnYXyIbGquXbz9hns1bd7XY/taPb7abky4eFIMeErTr9cpxgzJH4pe/ezdkociJ7SazaqCY9zmXnFp+sVqCy9CtVwb3sURSJnR9nIWwXLHcoRXTQJaQY2bNZ9eiztB5KzkX38CUVp1b3fUMfz+ZMa9Xc7WTtGVmr7nQ6t+zodDr6LOPOSBCEO5B16J+RTDMNomBc/A/euPdBNoqcyG4sovxhQc5ecqd2L3vqUEFx+jhbSqYb97JHclQPO/bhs1AYyp+p3lWXQmTPZNWjc6VHWnYUJ31Y90PVJIh0Fc5YtN18OaxaWJ4e3POYVt1ut2/a0W63dRlq+mZpSb2kVs1/d2TVjovLRlEs+9LS0vz8fBiG8/Pzic7JkaWlJbPspbBq2bcyOlnROJc9m5ChX6/VPa9MDy8TwbnsoV+v1et1yarZ/lxhyNoZ8GpWh/vWHkVRFPp1OcbVAiafaE5hn664Llg1PBI7YXH8N8xQaeilsOqIa4FekGMCvNVqXbOj1Wpp8tPaImuJg5M0O9dVj8u65yrm1ut+KD28xaeLGbIRK8xuK9qDFxRQoWwUxbK32+25ubnl5eW5ublE5+RIu902yj6wDOb2B7ckC2KSSPu3BCPJuKdCee1Ff0QsoVhffKPlS+mqK3UuexarHjy2lGueYSK4lX3YsfOroFI7Cbxa3d+p+ETwjeqOsd239ihSuJvucXzUQ4y2C4gD7fh7slXX5Rhhrhv3RppKY1eYjLsTOBz277Z/V511GMNa9eLi4mU7FhcXM1+e+WigoGY1ievxuTfyedxalc8M2rWjan6T/KAknuabhcFGUSJ7q9VK/qs8opV9eCNcWx5Jkz6qVtaI8GQ1ONNnukfpMdfg3VwJxc5VUSv83IabWHIuu/DcY2g7iRYzbtVOZI+iaNB3+0lL1zuw8AlrHPKnFaIw2WvS0EoRnnyPlKCSWzWqVl237ofDviFli2DAdhklGlUzZG53rFUHQXDJjiDQXMMw18x0UfLflCnG3Mrb4Z/ENLdqsGq5fGw+k5uuZaPIgezSjfHqWFq1pkYsvSXtIkIJhSsa68iZvTmXXSqkupRiI6uoN+goRnaxmxVXPLnnTi/QL5e6H1iVg0JkD/16zfOY4B0sRqjGwAEzVz7sW5k5EXHdVqgK+QnLsG/MdsMa7Vq1YatjOqxVN5vNi3Y0m011dvajav2m8NFLTXAlm0c09aO3asW3xF50Mp0oG0UOZJfueRyr1taIuAqoIn1DmXBJxbOF4RnM0e4G57ILqIvJH51xq3Ynu9AD6yWt7rjZTCGyD1UfPmrH4or6x67ELGsn0c+tXytHZMJMt27UxpdpGqyanZAf46qsVS8sLFywY2FhQZNflrVqzfeMzqrKTlWGKbJqF7IXatWjHLWNzGLrd9ms2onsAqonVf1gbmbso2jZ7a1aVxmVG1FHUTGyM96WjK/5jQMMI6vm9xWkr1Xzs2/S1rO0CRL9hjR54pxqAjwzrFU3Go0VOxqNhi5DeSo1OaxZLxY/Ns+FKjOUP7KeAGfLQjMB7kz2nFatrxHTecnl0vaa2Fr1pCbAncguYLPXYcZH1fllT+2nxV5Yv2wdU8TQqgwU0NoFqbQj4+RjaSqbfa20YU11VGJUnQvWqnu93hN29Ho9fZbymp248SDgN3MpNhWxT27CDiN+gYOtYbYFCPVh2nDF5GLR1bKrDLrX6bBR5ET2VKs2bPiSdRAeYDxOL2bwa3wAUozSraxaUbPM21z6FyC7MLNteBxlT5tdq3bUyQjYjKoDL/57j5m0aieyy6vHuhBOjtTFP3mQRseDMyysWltJGazaiOO+fTr+ZS3zzti4jgPmHMNCe281AAAI4klEQVRkLJeVovvXZTE6XbWhKfmSZGopVeLeqp1gtGpREPlIeo2IFcDcr5VTZ7Bq4ZKKP91zYdWOCDWaaR15xq26GFKtetCKZnYC3AFciCrDTTyoslfN6DutOowTnrBqImxmEaf94mX7Jf08a8Hp0+uloWyyzwi0Vq2bfmW/DKtOhZVY311wD6KhsANcPXDTT4Arn9et1z/4KUIzLut/dqx6cgvGhJcvm2eMb9UWG8rKQ9lknxEgOwmQnYSZsWpHe31zMAmrKVsU0as+Ecom+4wA2UmA7CRU36qTiY1yDsjcUrYoglWD4oDsJEB2Eqpv1TMFoogEyE4CZCcBspMAq64UiCISIDsJkJ0EyE4CrLpSIIpIgOwkQHYSIDsJsOpKgSgiAbKTANlJgOwkwKorBaKIBMhOAmQnAbKTAKuuFIgiEiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CbDqSoEoIgGykwDZSYDsJBRo1f3Vj5GQkJCQkJDyp6Ks2m2GwIY+HngpgOwkQHYSIDsJsOpKgSgiAbKTANlJgOwkwKorBaKIBMhOAmQnAbKTAKuuFIgiEiA7CZCdBMhOAqy6UiCKSIDsJEB2EiA7CbDqSoEoIgGykwDZSYDsJMCqKwWiiATITgJkJwGykwCrrhSIIhIgOwmQnQTITgKsulIgikiA7CRAdhIgOwmw6kqBKCIBspMA2UmA7CSkW3Xo12teIB4NvNqQuh/K34JVk4AoIgGykwDZSYDsJBitOvTrsRsLVh14I4MO/brKrWHVJCCKSIDsJEB2EiA7CVqrDv167MCBJ1h16Ne5I8mZLKxV9/v9Q3b0+/08N8M+QkhonimKQlRpMrBR5ER2qfaBAueyAxuKkV01jRh4UteRjGPMVDB4JtXaFaIzHyk/U3pRRUifABc7a9mDVLqxVt3tdj+1o9vtppSXmXiX594nbNXpl9M94sQvffduzkaRE9lLYtVGNelxLnsU8U3dcKNpS1EVxq3sfNcy0N1THIx1Vi8MclicMo24bu2s8FwT1hpvGIbJ14YnxG/rfhiG1YyC8aya10+lKGvVnU7nlh2dTkdf1Pgxlr1Q4PEHjN6ZH1GJTFbNiTR4494H2ShyIruxiPKHBTl7yZ3avexx0x7cX9zwlTdrsRRVYdzLHkWZRtVeoB9b1/1wBqzaheyJuPEL1SOT/nk1qYDKt/zsVi0blKrbZK263W7ftKPdbuuKoemb2S6tzFbNf3dk1Y6Ly0ZRLPvS0tL8/HwYhvPz84nOyZGlpSWz7KWwarunQ0IKkZ25P03jt1qKqjCOZZdtNxFTa9XskcATDsyAVbto7YJVR5KSSh15j54Bx3Zl1aZRdavVumZHq9UylEI9F8J0V4OT2JBjSi5mwZ4mZi3OKgpRnDQoeZA/vC4/uy2GetwWi7XqWPZ2uz03N7e8vDw3N5fonBxpt9tG2Qe1z9w+N9IThxA6iTQ1wko2PKwYG8p1zx4RSyjWl9x7pjynj4Fz2YWQUnuw3VJUhXEsu+AI2jHeaBELVu2itctWzb5U75Vi2jmvMjd2qxSTWKteXFy8bMfi4qK6EIbxAvORsHohdPtcMbk38nnMxULfZwbt2ocWvokMSuJpvlkYbBQlsrdareS/yiNa2ZkVoNG7kTTpo2pljQhPVoMz/fiVbNVmp+ZLKP7NgqJW+LkNN87mXHauA9I1/tJPNhSNY9nHGlVrZ8AHn1XQNVy3dm6t2vP0u/XUTbuiKktkt2qpP0jdAR4EwSU7gkAjuWG4wDw6yE9UijH38LDmngyLoAarNq8KTK4HZaPIgewpM7GWVq2pEcvl5rSLCCUUrmisI2cr3s5llzY5qZqP3VJUhXEsu3JULb9Wnx0NR9WjR/uqmojr1q4aVWux3HhfQd3HsGrFZhZZF9aqm83mRTuazaa6EPajav2m8NFLTXV7gbmz01u14luiVU+m6bBR5EB26Z7HsWptjQyrwRSe6RvKhEsqni0Mz2COZoxdyy5sJNPsK7NbiqowjmVXjar9DDvAh1Zd144IqoHr1i5atbp71gpZUZUlxrJqvlUrZWKtemFh4YIdCwsLhlLYrlVrvmd0VlV2aUqU3KpdyF6oVY9y1Bq2xdbvslm1A9ktN7xjrdq97My0tWZUHfp1o1VHURT6XtLkKmgirjsZhVUrZr8UrV/YNOB+60+pmMRvgDcajRU7Go2GLkPNdgHDerH4sXkuVJmh/JH1BDhbFpoJcGey57RqGzfR1K7NaqytVU9qAtyB7JZWbbcUVWGct/YoilL/WGv4Mj5NsetsNPYOqm/VLmTn1qrtRtVxLAch+0AUhqG73SclZBJW3ev1nrCj1+vps5SnAYVdTuJmLsWmIm7ant9hxG1B5lY72c1h4o5vw4YrJheLbWVsK9O9ToeNIieyp1q1ebO2qUaGYw/+e+z9pucvl1Bv1YqaZd7m0r8Q2dmdjbwmhjZdQWfQ41R2o0GMrDoxcosh8wyMql209oyjarGdCypX1q6n7F/WEuJJuYYeaCbndTOvitlX9jlPejZITldtaEq+JJlaSutxb9VOMFq1KIh8JL1GxApg7tfKqTNYtXBJxZ/uubBqV3Dtk3uolGtEHQ6Vp5gfo9aOqofr1qN5VwsqWCdF/wa45UMTe7qgciWfkabMqvNgMbSd+ouX7Zf08yyepk+vl4ayyT4jTNiq03aAW+VUASZg1RZr1exjdwVFlpkdqyZeyJvM5cvmGeNbte16bSkom+wzAmQnAbKTMDNWTb85dhJWU7Yoold9IpRN9hkBspMA2UmovlUnKx/lHJC5pWxRBKsGxQHZSYDsJFTfqmcKRBEJkJ0EyE4CZCcBVl0pEEUkQHYSIDsJkJ0EWHWlQBSRANlJgOwkQHYSYNWVAlFEAmQnAbKTANlJgFVXCkQRCZCdBMhOAmQnAVZdKRBFJEB2EiA7CZCdBFh1pUAUkQDZSYDsJEB2EmDVlQJRRAJkJwGykwDZSSjQqvurHyMhISEhISHlT0VZtdsMgQ19PPBSANlJgOwkQHYSEtn/f2+p8AwkOHeZAAAAAElFTkSuQmCC" alt="" />

  

python爬虫系列:Scrapy安装与使用的更多相关文章

  1. python爬虫的scrapy安装+pymongo的安装

    我的:python2.7版本    32位 注意scrapy只支持2.7及以上的版本. 1.安装python 2.安装pip 安装pip就不赘述了,网上很多教学 pip安装时要注意更新,如果pip版本 ...

  2. python爬虫框架—Scrapy安装及创建项目

    linux版本安装 pip3 install scrapy 安装完成 windows版本安装 pip install wheel 下载twisted,网址:http://www.lfd.uci.edu ...

  3. Python爬虫框架--Scrapy安装以及简单实用

    scrapy框架 框架 ​ -具有很多功能且具有很强通用性的一个项目模板 环境安装: Linux: ​        pip3 install scrapy ​ ​ ​  Windows: ​     ...

  4. Python爬虫框架Scrapy安装使用步骤

    一.爬虫框架Scarpy简介Scrapy 是一个快速的高层次的屏幕抓取和网页爬虫框架,爬取网站,从网站页面得到结构化的数据,它有着广泛的用途,从数据挖掘到监测和自动测试,Scrapy完全用Python ...

  5. python爬虫之scrapy安装(一)

    简介: Scrapy,Python开发的一个快速.高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据.Scrapy用途广泛,可以用于数据挖掘.监测和自动化测试. Scrap ...

  6. [Python爬虫] scrapy爬虫系列 <一>.安装及入门介绍

    前面介绍了很多Selenium基于自动测试的Python爬虫程序,主要利用它的xpath语句,通过分析网页DOM树结构进行爬取内容,同时可以结合Phantomjs模拟浏览器进行鼠标或键盘操作.但是,更 ...

  7. Linux 安装python爬虫框架 scrapy

    Linux 安装python爬虫框架 scrapy http://scrapy.org/ Scrapy是python最好用的一个爬虫框架.要求: python2.7.x. 1. Ubuntu14.04 ...

  8. 教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

    本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http://www.xiaohuar.com/,让你体验爬取校花的成就感. Scr ...

  9. 【转载】教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

    原文:教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神 本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http:/ ...

  10. Python爬虫框架Scrapy教程(1)—入门

    最近实验室的项目中有一个需求是这样的,需要爬取若干个(数目不小)网站发布的文章元数据(标题.时间.正文等).问题是这些网站都很老旧和小众,当然也不可能遵守 Microdata 这类标准.这时候所有网页 ...

随机推荐

  1. 深入解析Dropout——基本思想:以概率P舍弃部分神经元,其它神经元以概率q=1-p被保留,舍去的神经元的输出都被设置为零

    深度学习网络大杀器之Dropout——深入解析Dropout  转自:https://yq.aliyun.com/articles/68901 摘要: 本文详细介绍了深度学习中dropout技巧的思想 ...

  2. Spring生态简介

    目录 概述 项目说明 主要项目 社区项目 保留项目 最后总结 概述 做Java开发的人一提起Spring,首先在脑海中浮现出的就是"IoC","AOP",&qu ...

  3. 根据项目类型导入Excel文件到不同数据库

    前提:如果您要针对不同的业务做数据导入,可以参考下这个项目,这个项目的原理就是根据文件名进行区分,然后导入不同的数据表.下面我就写个Demo演示下: 学生表-- 主键,学生姓名,学生年龄,学校归属 教 ...

  4. SDAutoLayout的使用

    ## 简介- IOS布局的三个阶段:MagicNumber -> AutoResizingMask -> AutoLayout- 自动布局三大框架:UILayoutConstraint(原 ...

  5. listview 控件

    private void Form1_Load(object sender, EventArgs e) { //设置该listview关联的imagelist listView1.LargeImage ...

  6. IE浏览器缓存导致Ajax请求失败

    在IE浏览器中通过Ajax请求后台的数据,如果Page请求是postback类型的,可能会导致Ajax请求失败的问题 我们都知道ajax能提高页面载入的速度主要的原因是通过ajax减少了重复数据的载入 ...

  7. SQL学习整理

    SQL整理 SQL 对大小写不敏感! 一.对数据的操作 实现功能分类: 1. 增: 1.1 表存在,插入栏位: //插入新的行(按栏位的顺序插入) INSERT INTO Table_1 VALUES ...

  8. 了解jQuery的$符号

    $是什么? 可以使用typeof关键字来观察$的本质. console.log(type of $); //输出结果为function 因此可以得出结论,$其实就是一个函数.$(); 只是根据所给参数 ...

  9. (转载) android studio library生成jar包和aar的方法总结

    android studio library生成jar包和aar的方法总结 标签: android学习文档jar和aar的使用与生成gradle 2016-11-25 10:39 1782人阅读 评论 ...

  10. I/O多路复用技术

    典型应用于以下场合 1.处理多个描述字时,比如同时处理套接字和磁盘IO.终端IO 2.一个客户同时处理多个套接字 3.服务器既要处理监听套接字,又要处理已连接套接字 4.既要处理TCP.也要处理UDP ...