POJ 3592--Instantaneous Transference【SCC缩点新建图 && SPFA求最长路 && 经典】
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 6177 | Accepted: 1383 |
Description
It was long ago when we played the game Red Alert. There is a magic function for the game objects which is called instantaneous transfer. When an object uses this magic function, it will be transferred to the specified point immediately, regardless of how
far it is.
Now there is a mining area, and you are driving an ore-miner truck. Your mission is to take the maximum ores in the field.
The ore area is a rectangle region which is composed by n × m small squares, some of the squares have numbers of ores, while some do not. The ores can't be regenerated after taken.
The starting position of the ore-miner truck is the northwest corner of the field. It must move to the eastern or southern adjacent square, while it can not move to the northern or western adjacent square. And some squares have magic power that can instantaneously
transfer the truck to a certain square specified. However, as the captain of the ore-miner truck, you can decide whether to use this magic power or to stay still. One magic power square will never lose its magic power; you can use the magic power whenever
you get there.
Input
The first line of the input is an integer T which indicates the number of test cases.
For each of the test case, the first will be two integers N, M (2 ≤ N, M ≤ 40).
The next N lines will describe the map of the mine field. Each of the N lines will be a string that contains M characters. Each character will be an integer X (0 ≤ X ≤ 9) or a '*' or a '#'. The integer X indicates
that square has X units of ores, which your truck could get them all. The '*' indicates this square has a magic power which can transfer truck within an instant. The '#' indicates this square is full of rock and the truck can't move on this square.
You can assume that the starting position of the truck will never be a '#' square.
As the map indicates, there are K '*' on the map. Then there follows K lines after the map. The next K lines describe the specified target coordinates for the squares with '*', in the order from north to south then west to east.
(the original point is the northwest corner, the coordinate is formatted as north-south, west-east, all from 0 to N - 1,M - 1).
Output
For each test case output the maximum units of ores you can take.
Sample Input
1
2 2
11
1*
0 0
Sample Output
3
题目大意:
有一个N*M的矩阵地图,矩阵中用了多种字符代表不同的地形。假设是数字X(0~9),则表示该区域为矿区,有X单位的矿产。
假设是"*",则表示该区域为传送点,而且相应唯一一个目标坐标。假设是"#",,则表示该区域为山区,矿车不能进入。如今矿车的出发点在坐标(0。0)点。而且(0,0)点一定不是"#"区域。矿车仅仅能向右走、向下走或是遇到传送点的时候能够传送到指定位置。那么问题来了:矿车最多能採到多少矿。
思路:
假设把N*M个矩阵单位看做是N*M个点。编号为0~N*M。然后从一个坐标到还有一个坐标看做是两点之间的边。
到达的坐标所拥有的矿产为边的权值。那么问题就变成了:矿车从节点0出发,所能达到的最长路径。可是除了向右走和向下走的边,考虑到还有传送点和目标坐标构成的边。原图上就会多了非常多回退边。构成了非常多的有向环。
有向环的出现,使得矿车可以採到的矿产增多了一部分,仅仅要能走到有向环内,则该环内全部点的矿产都能被採到。可是问题也出来了,假设不做处理,直接搜索路径。那么矿车非常可能会走进环内不出来。
于是想到了缩点。把有向环缩为一个点。也就是强连通分量缩点。并记录强连通分量中的总矿产值。
缩点后,原图就变成了一个有向无环图(DAG)。然后又一次建立一个新图(DAG),对新图求最长路径(用SPFA算法),得到源点(0。0)到各点的最长路径。
从中找出最长的路径,就是所求的结果。
这题和POJ3126类似,都是缩点SPFA求最长路。POJ312解析
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
#define maxn 2000+100
#define maxm 40000+100
#define INF 0x3f3f3f3f
using namespace std;
int n, m; struct node {
int u, v, next;
}; node edge[maxm];
int head[maxn], cnt;
int low[maxn], dfn[maxn];
int dfs_clock;
int Stack[maxn], top;
bool Instack[maxn];
int Belong[maxn];
int scc_clock;
int val[maxn];//存每一个点的矿石量
int sumval[maxn];//存每一个缩点的矿石量
vector<int>Map[maxm];
char map[100][100]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
memset(val, 0, sizeof(val));
memset(sumval, 0, sizeof(sumval));
memset(val, 0, sizeof(val));
} void addedge(int u, int v){
edge[cnt] = {u, v, head[u]};
head[u] = cnt++;
} void getmap(){
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i)
scanf("%s", map[i]);
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
if(map[i][j] == '#') continue; if(i + 1 < n && map[i + 1][j] != '#')//向下走
addedge(i * m + j, (i + 1) * m + j);
if(j + 1 < m && map[i][j + 1] != '#')//向右走
addedge(i * m + j, i * m + j + 1);
val[i * m + j] = map[i][j] - '0'; if(map[i][j] == '*'){
val[i * m + j] = 0;
int x, y;
scanf("%d%d", &x, &y);
if(map[x][y] != '#');//传送的位置可能为 #
addedge(i * m + j, x * m + y);
}
}
}
} void Tarjan(int u){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].v;
if(!dfn[v]){
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(dfn[u] == low[u]){
scc_clock++;
do{
v = Stack[--top];
sumval[scc_clock] += val[v];
Instack[v] = false;
Belong[v] = scc_clock;
}
while( v != u);
}
} void find(){
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(Belong, 0, sizeof(Belong));
memset(Stack, 0, sizeof(Stack));
memset(Instack, false, sizeof(false));
dfs_clock = scc_clock = top = 0;
for(int i = 0; i < n * m; ++i){
if(!dfn[i])
Tarjan(i);
}
} void suodian(){//缩点新建图
for(int i = 1; i <= scc_clock; ++i)
Map[i].clear();
// for(int i = 0; i < n * m; ++i){
// for(int j = head[i]; j != -1; j = edge[j].next){
// int u = Belong[i];
// int v = Belong[edge[j].v];
// if(u != v)
// Map[u].push_back(v);
// }
// }
//上面也是一种建图方式。
for(int i = 0; i < cnt; ++i){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v)
Map[u].push_back(v);
}
} int vis[maxn],dist[maxn]; void SPFA(){
queue<int>q;
memset(vis, 0, sizeof(vis));
memset(dist, 0, sizeof(dist));
vis[Belong[0]] = 1;
dist[Belong[0]] = sumval[Belong[0]];
q.push(Belong[0]);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = 0;
for(int i = 0; i < Map[u].size(); ++i){
int v = Map[u][i];
if(dist[v] < dist[u] + sumval[v]){
dist[v] = dist[u] + sumval[v];
if(!vis[v]){
vis[v] = 1;
q.push(v);
}
}
}
}
} int main (){
int T;
scanf("%d", &T);
while(T--){
init();
getmap();
find();
suodian();
SPFA();
sort(dist + 1, dist + scc_clock + 1);
printf("%d\n", dist[scc_clock]);
}
return 0;
}
POJ 3592--Instantaneous Transference【SCC缩点新建图 && SPFA求最长路 && 经典】的更多相关文章
- poj 3592 Instantaneous Transference 【SCC +缩点 + SPFA】
Instantaneous Transference Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 6204 Accep ...
- POJ 3592 Instantaneous Transference(强连通+DP)
POJ 3592 Instantaneous Transference 题目链接 题意:一个图.能往右和下走,然后有*能够传送到一个位置.'#'不能走.走过一个点能够获得该点上面的数字值,问最大能获得 ...
- POJ 3592 Instantaneous Transference(强联通分量 Tarjan)
http://poj.org/problem?id=3592 题意 :给你一个n*m的矩阵,每个位置上都有一个字符,如果是数字代表这个地方有该数量的金矿,如果是*代表这个地方有传送带并且没有金矿,可以 ...
- 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路
题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...
- poj 3592 Instantaneous Transference 缩点+最长路
题目链接 给一个n*m的图, 从0, 0这个点开始走,只能向右和向下. 图中有的格子有值, 求能获得的最大值. 其中有些格子可以传送到另外的格子, 有些格子不可以走. 将图中的每一个格子都看成一个点, ...
- POJ 3126 --Father Christmas flymouse【scc缩点构图 && SPFA求最长路】
Father Christmas flymouse Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 3007 Accep ...
- poj 3592 Instantaneous Transference
http://poj.org/problem?id=3592 #include <cstdio> #include <cstring> #include <algorit ...
- POJ 2762--Going from u to v or from v to u?【scc缩点新建图 && 推断是否是弱连通图】
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15755 ...
- poj3592 Instantaneous Transference tarjan缩点+建图
//给一个n*m的地图.坦克从(0 , 0)開始走 //#表示墙不能走,*表示传送门能够传送到指定地方,能够选择也能够选择不传送 //数字表示该格的矿石数, //坦克从(0,0)開始走.仅仅能往右和往 ...
随机推荐
- jFinal 关联数据库操作
1.建数据库(我用的是oracle数据库,其他的相对也差不多) -- Create table create table CLASSES ( classesid NUMBER not null, cl ...
- 项目:rbac 基于角色的权限管理系统;
- 简单示意流程图 - RBAC分析: - 基于角色的权限管理: - 权限等于用户可以访问的URL: - 通过限制URL来限制权限: - RBAC表结构组成: from django.db impor ...
- Windows10上使用windbg调试Chromium Windows。
###目的###Windows10上使用windbg调试Chromium Windows. 安装Windows 10 SDK时, 就包含了windbg.exe."C:\Program Fil ...
- jQuery中四种事件监听的区别
原文链接:点我 我们知道jquery提供了四种事件监听方式,分别是bind.live.delegate.on,下面就分别对这四种事件监听方式分析. 已知有4个列表元素: 列表元素1 列表元素2 列表元 ...
- 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...
- android SIM Switch功能和配置
SIM Switch feature是Smart 3G switch feature在LTE版本号上发展演变而来的功能: MTK双卡双待单通版本号仅仅有一个3/4 G Protocol.所以同一时刻仅 ...
- 编译Linux Kernel
近期编译 Linux Kernel 被 header 所在的文件骗了,使用命令例如以下 cd /usr/src/linux-headers-3.11.0-24-generic/ make menuco ...
- RvmTranslator6.4 is released
RvmTranslator6.4 is released eryar@163.com RvmTranslator can translate the RVM file exported by AVEV ...
- QT就是别人好心帮你做一些枯燥,并且很重复的代码编写工作,让你更好的把精力投入到你界面的逻辑和功能的实现的功能库(否则写了上万行代码了,才写出个BUG一大堆的毛坯)
好了,现在开始记录我学习QT的学习历程 . 本人也不是计算机专业出来的,自学了一点,但还是不好找工作,于是参加了培训,虽然感觉没多学到什么 编程的学习生涯就是不断的看别人的源码,然后自己参考着写写自己 ...
- tensorflow 语法及 api 使用细节
1. tf.nn.conv2d 的参数 padding='SAME' ⇒ 卷积之前的大小和卷积之后的大小一致,默认使用全 0 填充: padding='VALID' ⇒ 也即仅适用其有效部分,而不使用 ...