1. 安装步骤

Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不需要创建myid文件),

主要是针对每个Kafka服务器配置一个单独的server.properties,三个服务器分别使用server.properties,server.1.properties, server.2.properties

cp server.properties server.1.properties
cp server.properties server.2.properties

修改server.1.properties和server.2.properties,主要有三个属性需要修改

broker.id=1
port=9093
log.dirs=/tmp/kafka-logs-1

port指的是Kakfa服务器监听的端口

启动三个Kafka:

bin/kafka-server-start.sh server.properties
bin/kafka-server-start.sh server.1.properties
bin/kafka-server-start.sh server.2.properties

2. Kafka脚本常用配置参数

2.1 kafka-console-consumer.sh

--from-beginning                        If the consumer does not already have an established offset to consume from, start with the earliest message present in the log rather than the latest message.

--topic <topic>                           The topic id to consume on

--zookeeper <urls>                    REQUIRED: The connection string for the zookeeper connection in the form host:port. Multiple URLS can be given to allow fail-over.

--group <gid>                            The group id to consume on. (default: console-consumer-37803)

在consumer端,不需要指定broke-list,而是通过zookeeper和topic找到所有的持有topic消息的broker

2.2 kafka-console-producer.sh

--topic <topic>                         REQUIRED: The topic id to produce  messages to.

--broker-list <broker-list>        REQUIRED: The broker list string in the form HOST1:PORT1,HOST2:PORT2.

2.3 kafka-topic.sh

--create                                Create a new topic.

--describe                              List details for the given topics.

--list                                  List all available topics.

--partitions <Integer: # of partitions> The number of partitions for the topic being created or altered (WARNING:   If partitions are increased for a  topic that has a key, the partition logic or ordering of the messages will be affected)

--replication-factor <Integer: replication factor> The replication factor for each partition in the topic being created

--zookeeper <urls>                    REQUIRED: The connection string for the zookeeper connection in the form host:port. Multiple URLS can be given to allow fail-over.

--topic <topic>                         The topic to be create, alter or describe. Can also accept a regular expression except for --create option

3. 伪机群测试

测试前,先总结有哪些测试点

目前想到的是,Partition有个leader的概念,leader partition是什么意思?干什么用的?

3.1 创建Topic

创建一个Topic,10个Partition,副本数为3,也就是说,每个broker上的每个分区,在其它节点都有副本,因为每个节点都有10个节点的数据

3.2 每个broker创建的目录

当创建完Topic后,每个Topic都会在Kakfa的配置目录下(比如/tmp/kafka-logs,建立相应的目录和文件)

topic_p10_r3-0

topic_p10_r3-1

----

topic_p10_r3-9

其中每个目录下面都有两个文件: 00000000000000000000.index  00000000000000000000.log

3.3 Topic的详细信息

./kafka-topics.sh --describe --topic topic_p10_r3  --zookeeper localhost:2181  

得到的结果如下:

Topic:topic_p10_r3    PartitionCount:10    ReplicationFactor:3    Configs:
Topic: topic_p10_r3 Partition: 0 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: topic_p10_r3 Partition: 1 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 2 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
Topic: topic_p10_r3 Partition: 3 Leader: 2 Replicas: 2,1,0 Isr: 2,1,0
Topic: topic_p10_r3 Partition: 4 Leader: 0 Replicas: 0,2,1 Isr: 0,2,1
Topic: topic_p10_r3 Partition: 5 Leader: 1 Replicas: 1,0,2 Isr: 1,0,2
Topic: topic_p10_r3 Partition: 6 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: topic_p10_r3 Partition: 7 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 8 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
Topic: topic_p10_r3 Partition: 9 Leader: 2 Replicas: 2,1,0 Isr: 2,1,0

具体的含义是:

Here is an explanation of output. The first line gives a summary of all the partitions, each additional line gives information about one partition

  • "leader" is the node responsible for all reads and writes for the given partition. Each node will be the leader for a randomly selected portion of the partitions.
  • "replicas" is the list of nodes that replicate the log for this partition regardless of whether they are the leader or even if they are currently alive.
  • "isr" is the set of "in-sync" replicas. This is the subset of the replicas list that is currently alive and caught-up to the leader.

3.4 问题: 如果副本数为1,是否表示每个partition在集群中只有1份(也就是说每个partition只会存在于一个broker上),那么leader自然就表示这个partition就在leader所指的broker上了?

建立包含10个分区,同时只有一个副本的topic

./kafka-topics.sh --create  --topic  topic_p10_r1 --partitions 10 --replication-factor 1  --zookeeper localhost:2181

  

[hadoop@hadoop bin]$ ./kafka-topics.sh --describe --topic topic_p10_r1  --zookeeper localhost:2181
Topic:topic_p10_r1 PartitionCount:10 ReplicationFactor:1 Configs:
Topic: topic_p10_r1 Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 1 Leader: 2 Replicas: 2 Isr: 2
Topic: topic_p10_r1 Partition: 2 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 3 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 4 Leader: 2 Replicas: 2 Isr: 2
Topic: topic_p10_r1 Partition: 5 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 6 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 7 Leader: 2 Replicas: 2 Isr: 2
Topic: topic_p10_r1 Partition: 8 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 9 Leader: 1 Replicas: 1 Isr: 1

可见理解不错,每个partition有不同的leader,Leader所在的broker同时也是Replicas所在的broker(ID号一样)

因此可以理解,

1. 每个partition副本集都有一个leader

2. leader指的是partition副本集中的leader,它负责读写,然后负责将数据复制到其它的broker上。

3.一个Topic的所有partition会比较均匀的分布到多个broker上

3.5 broker挂了,Kafka的容错机制

在上面已经建立了两个Topic,一个是10个分区3个副本, 一个是10个分区1个副本。此时,假如有一个broker挂了,看看这两个Topic的容错如何?

通过jps命令可以看到有三个Kafka进程。

通过ps -ef|grep server.2.properties可以找到brokerId为2的Kakfa进程,使用kill -9将其干掉。干掉的时候,console开始刷屏,异常信息一样,都是:

[2015-02-23 02:14:00,037] WARN Reconnect due to socket error: null (kafka.consumer.SimpleConsumer)
[2015-02-23 02:14:00,039] ERROR [ReplicaFetcherThread-0-2], Error in fetch Name: FetchRequest; Version: 0; CorrelationId: 4325; ClientId: ReplicaFetcherThread-0-2; ReplicaId: 1; MaxWait: 500 ms; MinBytes: 1 bytes; RequestInfo: [topic_p10_r3,3] -> PartitionFetchInfo(0,1048576),[topic_p10_r3,9] -> PartitionFetchInfo(0,1048576),[topic_p10_r3,6] -> PartitionFetchInfo(0,1048576),[topic_p10_r3,0] -> PartitionFetchInfo(0,1048576) (kafka.server.ReplicaFetcherThread)
java.net.ConnectException: Connection refused
at sun.nio.ch.Net.connect0(Native Method)
at sun.nio.ch.Net.connect(Net.java:465)
at sun.nio.ch.Net.connect(Net.java:457)
at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:670)
at kafka.network.BlockingChannel.connect(BlockingChannel.scala:57)
at kafka.consumer.SimpleConsumer.connect(SimpleConsumer.scala:44)
at kafka.consumer.SimpleConsumer.reconnect(SimpleConsumer.scala:57)
at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:79)
at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:71)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1$$anonfun$apply$mcV$sp$1.apply(SimpleConsumer.scala:109)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply$mcV$sp(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.consumer.SimpleConsumer$$anonfun$fetch$1.apply(SimpleConsumer.scala:108)
at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)
at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:107)
at kafka.server.AbstractFetcherThread.processFetchRequest(AbstractFetcherThread.scala:96)
at kafka.server.AbstractFetcherThread.doWork(AbstractFetcherThread.scala:88)
at kafka.utils.ShutdownableThread.run(ShutdownableThread.scala:51)
[2015-02-23 02:14:00,040] WARN Reconnect due to socket error: null (kafka.consumer.SimpleConsumer)

3,9,6,0 这个四个分区 正是topic_p10_r3上broker2作为leader的partition,可见Kafka要做Leader移交,看看此时的topic_p10_r3和topic_p10_r1的情况,我们已经把broker2 kill掉了

topic_p10_r3(Partition切换到其它Leader上了。。。Rplicas还有3,。。。)

[hadoop@hadoop bin]$ ./kafka-topics.sh --describe --topic topic_p10_r3  --zookeeper localhost:2181
Topic:topic_p10_r3 PartitionCount:10 ReplicationFactor:3 Configs:
Topic: topic_p10_r3 Partition: 0 Leader: 0 Replicas: 2,0,1 Isr: 0,1
Topic: topic_p10_r3 Partition: 1 Leader: 0 Replicas: 0,1,2 Isr: 0,1
Topic: topic_p10_r3 Partition: 2 Leader: 1 Replicas: 1,2,0 Isr: 1,0
Topic: topic_p10_r3 Partition: 3 Leader: 1 Replicas: 2,1,0 Isr: 1,0
Topic: topic_p10_r3 Partition: 4 Leader: 0 Replicas: 0,2,1 Isr: 0,1
Topic: topic_p10_r3 Partition: 5 Leader: 1 Replicas: 1,0,2 Isr: 1,0
Topic: topic_p10_r3 Partition: 6 Leader: 0 Replicas: 2,0,1 Isr: 0,1
Topic: topic_p10_r3 Partition: 7 Leader: 0 Replicas: 0,1,2 Isr: 0,1
Topic: topic_p10_r3 Partition: 8 Leader: 1 Replicas: 1,2,0 Isr: 1,0
Topic: topic_p10_r3 Partition: 9 Leader: 1 Replicas: 2,1,0 Isr: 1,0

topic_p10_r1:没有切换,其中分区为1,47的Leader是-1了。。 这就出错了

[hadoop@hadoop bin]$ ./kafka-topics.sh --describe --topic topic_p10_r1  --zookeeper localhost:2181
Topic:topic_p10_r1 PartitionCount:10 ReplicationFactor:1 Configs:
Topic: topic_p10_r1 Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 1 Leader: -1 Replicas: 2 Isr:
Topic: topic_p10_r1 Partition: 2 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 3 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 4 Leader: -1 Replicas: 2 Isr:
Topic: topic_p10_r1 Partition: 5 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 6 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 7 Leader: -1 Replicas: 2 Isr:
Topic: topic_p10_r1 Partition: 8 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 9 Leader: 1 Replicas: 1 Isr: 1

重启broker 2得到结果如下:(对于topic_p10_r3,leader没有变化,即每个Partition都有自己的Leader,新加入的broker只能follower;而topic_p10_r1,则会选出Leader)

[hadoop@hadoop bin]$ ./kafka-topics.sh --describe --topic topic_p10_r3  --zookeeper localhost:2181
Topic:topic_p10_r3 PartitionCount:10 ReplicationFactor:3 Configs:
Topic: topic_p10_r3 Partition: 0 Leader: 0 Replicas: 2,0,1 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 1 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 2 Leader: 1 Replicas: 1,2,0 Isr: 1,0,2
Topic: topic_p10_r3 Partition: 3 Leader: 1 Replicas: 2,1,0 Isr: 1,0,2
Topic: topic_p10_r3 Partition: 4 Leader: 0 Replicas: 0,2,1 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 5 Leader: 1 Replicas: 1,0,2 Isr: 1,0,2
Topic: topic_p10_r3 Partition: 6 Leader: 0 Replicas: 2,0,1 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 7 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: topic_p10_r3 Partition: 8 Leader: 1 Replicas: 1,2,0 Isr: 1,0,2
Topic: topic_p10_r3 Partition: 9 Leader: 1 Replicas: 2,1,0 Isr: 1,0,2
[hadoop@hadoop bin]$ ./kafka-topics.sh --describe --topic topic_p10_r1 --zookeeper localhost:2181
Topic:topic_p10_r1 PartitionCount:10 ReplicationFactor:1 Configs:
Topic: topic_p10_r1 Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 1 Leader: 2 Replicas: 2 Isr: 2
Topic: topic_p10_r1 Partition: 2 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 3 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 4 Leader: 2 Replicas: 2 Isr: 2
Topic: topic_p10_r1 Partition: 5 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 6 Leader: 1 Replicas: 1 Isr: 1
Topic: topic_p10_r1 Partition: 7 Leader: 2 Replicas: 2 Isr: 2
Topic: topic_p10_r1 Partition: 8 Leader: 0 Replicas: 0 Isr: 0
Topic: topic_p10_r1 Partition: 9 Leader: 1 Replicas: 1 Isr: 1

Kafka Topic的详细信息 捎带主要的安装步骤的更多相关文章

  1. 【原创】Kafka topic常见命令解析

    本文着重介绍几个常用的topic命令行命令,包括listTopic,createTopic,deleteTopic和describeTopic等.由于alterTopic并不是很常用,本文中就不涉及了 ...

  2. Kafka的配置文件详细描述

    在kafka/config/目录下面有3个配置文件: producer.properties consumer.properties server.properties (1).producer.pr ...

  3. Kafka Topic Partition Replica Assignment实现原理及资源隔离方案

    本文共分为三个部分:   Kafka Topic创建方式 Kafka Topic Partitions Assignment实现原理 Kafka资源隔离方案   1. Kafka Topic创建方式 ...

  4. kafka topic 相关操作

    1.列出集群中的topic bin/kafka-topics.sh --zookeeper spark1:2181,spark2:2181,spark3:2181 --list 2.创建topic r ...

  5. kafka系列六、java管理kafka Topic

    package com.example.demo.topic; import kafka.admin.AdminUtils; import kafka.admin.RackAwareMode; imp ...

  6. kafka topic 完全删除

    kafka topic 完全删除   1.自动删除脚本(得配置server.properties 中 delete.topic.enable=true) ./kafka-topics.sh --zoo ...

  7. How to: Calculate a Property Value Based on Values from a Detail Collection 如何:基于详细信息集合中的值计算属性值

    This topic describes how to implement a business class, so that one of its properties is calculated ...

  8. Add an Editor to a Detail View 将编辑器添加到详细信息视图

    In this lesson, you will learn how to add an editor to a Detail View. For this purpose, the Departme ...

  9. kafka topic查看删除

    1,查看kafka topic列表,使用--list参数 >bin/kafka-topics.sh --zookeeper 127.0.0.1:2181 --list __consumer_of ...

随机推荐

  1. C++闭包,一样很简单

    引用百度上对闭包的定义:闭包是指可以包含自由(未绑定到特定对象)变量的代码块:这些变量不是在这个代码块内或者任何全局上下文中定义的,而是在定义代码块的环境中定义(局部变量).“闭包” 一词来源于以下两 ...

  2. Delphi Base64编码/解码及ZLib压缩/解压

    最近在写的程序与SOAP相关,所以用到了一些Base64编码/解码及数据压缩/解压方面的知识. 在这里来作一些总结:   一.Base64编码/解码   一般用到的是Delphi自带的单元EncdDe ...

  3. ubuntu 下 caffe 的安装

    官方下载说明:Caffe | Installation: Ubuntu 在 ubuntu 的一些较新版本中(14.04 以上),caffe 的所有依赖包都可以使用 apt-get 大法搞定. 1. 依 ...

  4. Jsp bug_001

    报错: The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path 解 ...

  5. vue-router设置页面标题

    通过vue-router设置页面标题 const router = new Router({ routes: [ { path: '/', name: 'EntryConfirmation', met ...

  6. wpf控件开发基础(5) -依赖属性实践

    原文:wpf控件开发基础(5) -依赖属性实践 知识回顾 接上篇,回顾这三篇讲了什么东西 首先说明了属性的现存问题,然后介绍了依赖属性的基本用法及其解决方案,由于依赖属性以静态属性的方式存在,进而又介 ...

  7. Java--基础命名空间和相关东西(JAVA工程师必须会,不然杀了祭天)

    java.lang (提供利用 Java 编程语言进行程序设计的基础类)java.lang.annotation(提供了引用对象类,支持在某种程度上与垃圾回收器之间的交互)java.lang.inst ...

  8. R 语言学习(二)—— 向量

    1. 入门 将摄氏度转化为华氏度 >> 27*1.8+32 [1] 80.6 [1]:表示数字的向量索引号,在 R 语言中任何一个数字都看作一个向量. 向量化 >> temp ...

  9. 关于提高UDP发送效率的方法

    UDP的发送效率和什么因素有关呢? 直观觉得,UDP的切包长越大,应该发送效率越高(最长为65536).可是依据实际測试和在网上查到的资料的结果,包长度为1024为发送效率最高. 这样的结果让人感到疑 ...

  10. Delphi内存管理(Integer、Boolean、Record、枚举等都是在作用域内编译器自动申请内存,出了作用域自动释放;另外,字符串、Variant、动态数组、接口也是由Delphi自动管理)

    一.什么是堆.栈? 程序需要的内存空间分为 heap(堆) 和 stack(栈),heap 是自由存储区, stack 是自动存储区,使用 heap 需要手动申请.手动释放, stack 是自动申请. ...