我们把每一次交换看做两个插入两个删除。然后就是一个三维偏序。时间一维,下标一维,权值一维。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=100010;
struct query{
int t,x,y,k,w;
}q[N],c[N];
int ans[N],n,a[N],m,tr[N],b[N],cnt;
bool cmp(query a,query b){
return a.t<b.t;
}
int lowbit(int x){
return x&-x;
}
void add(int x,int w){
for(int i=x;i<=n;i+=lowbit(i)){
tr[i]+=w;
}
}
int getsum(int x){
int tmp=0;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr[i];
}
return tmp;
}
void cdq1(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq1(l,mid);cdq1(mid+1,r);
int ll=l;int rl=mid+1;int now=0;
while(ll<=mid&&rl<=r){
if(q[ll].x<=q[rl].x){
add(q[ll].y,q[ll].k);
c[++now]=q[ll++];
}
else{
ans[q[rl].w]+=q[rl].k*(getsum(n)-getsum(q[rl].y));
c[++now]=q[rl++];
}
}
while(ll<=mid){
add(q[ll].y,q[ll].k);
c[++now]=q[ll++];
}
while(rl<=r){
ans[q[rl].w]+=q[rl].k*(getsum(n)-getsum(q[rl].y));
c[++now]=q[rl++];
}
for(int i=l;i<=mid;i++){
add(q[i].y,-q[i].k);
}
for(int i=l;i<=r;i++){
q[i]=c[i-l+1];
}
}
void cdq2(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq2(l,mid);cdq2(mid+1,r);
int ll=l;int rl=mid+1;int now=0;
while(ll<=mid&&rl<=r){
if(q[ll].x>=q[rl].x){
add(q[ll].y,q[ll].k);
c[++now]=q[ll++];
}
else{
ans[q[rl].w]+=q[rl].k*getsum(q[rl].y-1);
c[++now]=q[rl++];
}
}
while(ll<=mid){
add(q[ll].y,q[ll].k);
c[++now]=q[ll++];
}
while(rl<=r){
ans[q[rl].w]+=q[rl].k*getsum(q[rl].y-1);
c[++now]=q[rl++];
}
for(int i=l;i<=mid;i++){
add(q[i].y,-q[i].k);
}
for(int i=l;i<=r;i++){
q[i]=c[i-l+1];
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
int tot=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++){
a[i]=lower_bound(b+1,b+1+tot,a[i])-b;
q[++cnt].t=cnt;q[cnt].x=i;q[cnt].y=a[i];q[cnt].k=1;q[cnt].w=0;
}
scanf("%d",&m);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
q[++cnt].t=cnt;q[cnt].x=x;q[cnt].y=a[x];q[cnt].k=-1;q[cnt].w=i;
q[++cnt].t=cnt;q[cnt].x=y;q[cnt].y=a[y];q[cnt].k=-1;q[cnt].w=i;
q[++cnt].t=cnt;q[cnt].x=x;q[cnt].y=a[y];q[cnt].k=1;q[cnt].w=i;
q[++cnt].t=cnt;q[cnt].x=y;q[cnt].y=a[x];q[cnt].k=1;q[cnt].w=i;
swap(a[x],a[y]);
}
cdq1(1,cnt);
sort(q+1,q+1+cnt,cmp);
cdq2(1,cnt);
printf("%d\n",ans[0]);
for(int i=1;i<=m;i++){
ans[i]+=ans[i-1];
printf("%d\n",ans[i]);
}
return 0;
}

BZOJ 2141 排队(CDQ分治)的更多相关文章

  1. BZOJ 2141: 排队 [CDQ分治]

    题意: 交换序列中两个元素,求逆序对 做分块做到这道题...一看不是三维偏序嘛.... 作为不会树套树的蒟蒻就写CDQ分治吧.... 对时间分治...x排序...y树状数组... 交换拆成两个插入两个 ...

  2. bzoj 2141 : 排队 (cdq分治+bit)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2141 思路: 其实就是求动态逆序对...cdq降维,用树状数组前后求两遍逆序对就好了 切水 ...

  3. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  4. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  5. BZOJ 2141 排队 (CDQ分治)

    [BZOJ2141]排队 这道题和动态逆序对比较像(BZOJ-3295 没做过的同学建议先做这题),只是删除操作变成了交换.解法:交换操作可以变成删除加插入操作,那么这题就变成了 (时间,位置,值)的 ...

  6. bzoj 4237 稻草人 - CDQ分治 - 单调栈

    题目传送门 传送点I 传送点II 题目大意 平面上有$n$个点.问存在多少个矩形使得只有左下角和右上角有点. 考虑枚举左下角这个点.然后看一下是个什么情况: 嗯对,是个单调栈.但不可能暴力去求每个点右 ...

  7. bzoj 3262 陌上花开 - CDQ分治 - 树状数组

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  8. bzoj 2141: 排队

    2141: 排队 Time Limit: 4 Sec Memory Limit: 259 MB Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我, ...

  9. Bzoj 2141: 排队 分块,逆序对,树状数组

    2141: 排队 Time Limit: 4 Sec  Memory Limit: 259 MBSubmit: 1310  Solved: 517[Submit][Status][Discuss] D ...

  10. bzoj 2141 : 排队 分块

    题目链接 2141: 排队 Time Limit: 4 Sec  Memory Limit: 259 MBSubmit: 1169  Solved: 465[Submit][Status][Discu ...

随机推荐

  1. ZBrush 4R7中自定义笔刷

    为了便于雕刻,ZBrush®很人性化地设计了自定义笔刷.随着ZBrush软件版本不断更新,功能也在不断完善.只是在笔刷面板ZBrush软件就为用户提供了上百种之多,如果我们想要用某种笔刷,一个个找起来 ...

  2. 注解实战@Test标签

    1.创建一个Maven工程 2.点击java,右键-新建一个类 package com.course.testng; import org.testng.annotations.Test; publi ...

  3. javascript编程风格(粗略笔记)

    1.空格 紧凑型: project.MyClass = function(arg1, arg2){ 松散型: for( i = 0; i < length; i++ ){ 2.代码行长度 最多8 ...

  4. HDU 3068 最长回文( Manacher模板题 )

    链接:传送门 思路:Manacher模板题,寻找串中的最长回文子串 /***************************************************************** ...

  5. linux 模块编译步骤(原)

    linux 模块编译步骤(原) 博主推荐:<Linux命令模板Licote(原)> 本文将直接了当的带你进入linux的模块编译.当然在介绍的过程当中,我也会添加一些必要的注释,以便初学者 ...

  6. vue自定义组件并使用

    以下是使用自己写的一个简单的文件上传框为例 1.自定义组件结构(一个js文件,一个vue文件),最好单独放一个文件 2.upload.vue 内容 其中,action是父组件传递给子组件的参数,使用p ...

  7. java源码之List(ArrayList,LinkList,Vertor)

    1,List概括 List的框架图 (01) List 是一个接口,它继承于Collection的接口.它代表着有序的队列. (02) AbstractList 是一个抽象类,它继承于Abstract ...

  8. URAL 1517 Freedom of Choice

    Freedom of Choice Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on Ural. Orig ...

  9. luogu 1865 数论 线性素数筛法

    洛谷 1865 数论 线性素数筛法 最基本的线性素数筛法,当做复习欧拉筛法了,没有尝试过使用更暴力的筛法... WA了一次,手抖没打\n 传送门 (https://www.luogu.org/prob ...

  10. 洛谷 P2298 Mzc和男家丁的游戏

    P2298 Mzc和男家丁的游戏 题目背景 mzc与djn的第二弹. 题目描述 mzc家很有钱(开玩笑),他家有n个男家丁(做过上一弹的都知道).他把她们召集在了一起,他们决定玩捉迷藏.现在mzc要来 ...