https://zybuluo.com/ysner/note/1158123

题面

戳我

解析

我们要求出第\(r\)种方案,莫过于看其前面什么时候有\(r-1\)种方案。

于是,我们要求出每种情况的方案数。

设\(dp[s][m][n]\)表示第\(i-n\)个字母中,已分\(m\)段,第\(i\)个字母为s(\(s\in\{A,C,G,T\}\))字母的序号 的方案数。

状态转移方程易得:(其中\(l\)是下一个字母)

\(dp[j][k][i]+=dp[l][k-(j>l)][i+1]\)

为了下面运算方便,要对\(dp[s][m][n]\)求前缀和\(sum[s][m][n]=\sum_{i=1}^s dp[i][m][n]\)

然后就可以从前往后推了,若碰到的字母已知,看段数就可以了;

如果碰到的字母未知,枚举\(s=1...4\)的情况,如\(r>dp[s][m][n]\),说明第\(r\)个还在当前枚举字母情况的后面,继续枚举;否则,这一位就是当前枚举到的字母。

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=1e5+100;
char s[N];
int m,k,a[N];
ll r,n,dp[5][15][N],sum[5][15][N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void wri(re int x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) wri(x/10);
putchar(x%10+'0');
}
int main()
{
n=gi();m=gi();r=gi();
scanf("%s",s+1);
fp(i,1,n)
if(s[i]=='A') a[i]=1;else if(s[i]=='C') a[i]=2;else if(s[i]=='G') a[i]=3;else if(s[i]=='T') a[i]=4;
if(a[n]) dp[a[n]][1][n]=1;
else fp(i,1,4) dp[i][1][n]=1;
fq(i,n-1,1)
fp(j,1,4)
if(!a[i]||a[i]==j)
fp(k,1,m)
fp(l,1,4)
dp[j][k][i]+=dp[l][k-(j>l)][i+1];
fp(i,1,4)
fp(j,1,n)
fp(k,1,m)
sum[i][k][j]=sum[i][k-1][j]+dp[i][k][j];
re int las=0;
fp(i,1,n)
if(a[i])
{
if(a[i]<las) --m;
las=a[i];
putchar(s[i]);
}
else
{
re int j;
for(j=1;j<=4&&r>sum[j][m-(j<las)][i];j++) r-=sum[j][m-(j<las)][i];
if(j==1) putchar('A');if(j==2) putchar('C');if(j==3) putchar('G');if(j==4) putchar('T');
if(j<las) --m;
las=j;
}
puts("");
return 0;
}

[APIO2008]DNA的更多相关文章

  1. 4606: [Apio2008]DNA

    4606: [Apio2008]DNA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 63  Solved: 36[Submit][Status][D ...

  2. 【BZOJ4606】[Apio2008]DNA DP

    [BZOJ4606][Apio2008]DNA Description 分析如DNA序列这样的生命科学数据是计算机的一个有趣应用.从生物学的角度上说,DNA 是一种由腺嘌呤.胞嘧啶.鸟嘌呤和胸腺嘧啶这 ...

  3. [APIO2008]DNA 题解

    题目链接 首先呢,看到 A C G T 对应不同的权值,第一步就是把字母转换成数字. 我们分别对 A->1 C->2 G->3 T->4 进行标号,之后方便 \(\text{d ...

  4. bzoj 4606: [Apio2008]DNA【dp】

    写题五分钟读题两小时系列-- 看懂题的话不算难,然而我去看了大佬的blog才看懂题-- 题目大意是:一个原字符串,其中有一种通配符,合法串的定义是这个串(不含通配符))可以匹配原串并且这个串最多分成k ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  7. DNA解链统计物理

    来源:Kerson Huang, Lectures on Statistical Physics and Protein Folding, pp 24-25 把双链DNA解开就像拉拉链.设DNA有\( ...

  8. AC自动机+DP HDOJ 2457 DNA repair(DNA修复)

    题目链接 题意: 给n串有疾病的DNA序列,现有一串DNA序列,问最少修改几个DNA,能使新的DNA序列不含有疾病的DNA序列. 思路: 构建AC自动机,设定end结点,dp[i][j]表示长度i的前 ...

  9. [Leetcode] Repeated DNA Sequences

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

随机推荐

  1. 搜索条件两个时间,通过php数组排序,保证select语句between时间 前小后大

    //搜索条件两个时间,通过数组排序,保证select语句between时间 前小后大 $sort_array=[$_POST['clockDate1'],$_POST['clockDate2']]; ...

  2. windows编译MaskRCNN

    1.代码修改为3.0语言版本 2.setup_windows.py 文件内容为 #!/usr/bin/env python import numpy as np import os # on Wind ...

  3. ABP生成错误:必须添加对程序集“netstandard”的引用

    当前使用ABP版本为:4.6.0 升级vs2017到15.4版本,升级framework到4.7版本 如果Core版本请升级到net core 2

  4. nagios插件nagiosql安装配置

    nagios插件nagiosql安装配置 # Nagiosql install [root@Cagios ~]# yum install -y libssh2 libssh-devel [root@C ...

  5. Linux 通过cksum 来判断文件是否是相同

    1. 最近scp部署文件时 发现日期会发生变化 (刚查了下 可以使用 -p 命令进行处理) 会变成部署时的日期. 不好判断文件倒是有没有部署 2. 最简单的办法 我mount了 补丁服务器  到lin ...

  6. 惊了!!! 小白零基础学java (月薪过万是你的梦想嘛) 手把手教学 就怕你不动手【二十五】第二章【初识MySQL】

    初识MySQL1. 了解主流的数据库和数据库分类1.1 数据库概念数据库:按照数据结构来组织.存储和管理数据的一种建立在计算机存储设备上的仓库. 数据库的优势: 1. 可以持久化存储大量的数据.方便我 ...

  7. python爬虫14 | 就这么说吧,如果你不懂python多线程和线程池,那就去河边摸鱼!

    你知道吗? 在我的心里 你是多么的重要 就像 恩 请允许我来一段 freestyle 你们准备好了妹油 你看 这个碗 它又大又圆 就像 这条面 它又长又宽 你们 在这里 看文章 觉得 很开心 就像 我 ...

  8. PAT 1098. Insertion or Heap Sort

    According to Wikipedia: Insertion sort iterates, consuming one input element each repetition, and gr ...

  9. Office 2003的卸载 与 Office 2013 的安装

    一.Office 2003的卸载 软件:卸载Office2003.msi 运行该软件,等待几分钟即可, 二.Office 2013 的安装 1.Office Professional Plus 201 ...

  10. hdu_1020_Encoding_201310172120

    Encoding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...