**链接:****传送门 **

题意:给一个 n ,输出 Fibonacci 数列第 n 项,如果第 n 项的位数 >= 8 位则按照 前4位 + ... + 后4位的格式输出

思路:

  • n < 40时位数不会超过8位,直接打表输出

  • n >= 40 时,需要解决两个问题

    1. 后 4 位可以用矩阵快速幂求出,非常简单
    2. 前 4 位的求法借鉴 此博客!

balabala:真是涨姿势了~~


/*************************************************************************
> File Name: hdu3117.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月04日 星期四 21时14分23秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; const int maxn = 2;
const int MOD = 10000;
#define mod(x) ((x)%MOD)
#define ll long long
#define dou double
#define cal(x) ( -0.5*log10(5) + (double)x*log10(((1+sqrt(5))*1.0)/2) )
#define cls(x) memset(x,0,sizeof(x)) struct mat{
int m[maxn][maxn];
}unit;
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
return;
}
mat operator *(mat a,mat b){
mat ret;
cls(ret.m);
ll x;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
x = 0;
for(int k=0;k<2;k++)
x += mod( (ll)a.m[i][k]*b.m[k][j] );
ret.m[i][j] = mod(x);
}
}
return ret;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
} mat a,b;
void init_mat(){
cls(a.m);
a.m[0][0] = a.m[0][1] = a.m[1][0] = 1;
cls(b.m);
b.m[0][0] = b.m[1][0] = 1;
} ll n;
ll fib[40];
void init_fib(){
fib[0] = 0; fib[1] = fib[2] = 1;
for(int i=3;i<40;i++) fib[i] = fib[i-1] + fib[i-2];
}
int main(){
init_unit();
init_fib();
init_mat();
while(cin>>n){
if(n<40) cout<< fib[n] <<endl;
else{
dou t1 = cal(n);
dou tmp = ( t1 - (int)t1 + 3 );
printf("%d...", (int)pow( 10 , tmp ) );
mat ans = pow_mat( a , n-2 );
ans = ans*b;
printf("%04d\n",ans.m[0][0]);
}
}
return 0;
}

HDU 3117 Fibonacci Numbers( 矩阵快速幂 + 数学推导 )的更多相关文章

  1. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  2. HDU 3117 Fibonacci Numbers(矩阵)

    Fibonacci Numbers [题目链接]Fibonacci Numbers [题目类型]矩阵 &题解: 后4位是矩阵快速幂求,前4位是用log加Fibonacci通项公式求,详见上一篇 ...

  3. Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)

    题目链接: https://projecteuler.net/problem=435 题意: The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined rec ...

  4. LightOJ 1070 Algebraic Problem:矩阵快速幂 + 数学推导

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1070 题意: 给你a+b和ab的值,给定一个n,让你求a^n + b^n的值(MOD ...

  5. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  6. HDU 3117 Fibonacci Numbers(围绕四个租赁斐波那契,通过计++乘坐高速动力矩阵)

    HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意:  求第n个斐波那契数的 ...

  7. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  8. HDU 3117 Fibonacci Numbers 数学

    http://acm.hdu.edu.cn/showproblem.php?pid=3117 fib是有一个数学公式的. 这里的是标准的fib公式 那么fib = 1 / sqrt(5) * ((1 ...

  9. hdu3306 Another kind of Fibonacci【矩阵快速幂】

    转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...

随机推荐

  1. Vue学习之路第十八篇:私有过滤器的使用

    1.上篇已经介绍了全局过滤器的使用,“全局”顾名思义就是一次定义处处使用,可以被一个页面里不同的Vue对象所使用,如下代码所示: <body> <div id="app1& ...

  2. TCP协议和UDP协议

    一:TCP(Transmission Control Protocol)  传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 第一次握手:主机A发送 ...

  3. Spring学习总结(19)——Spring概念详解

    Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson创建.简单来说,Spring是一个分层的JavaSE/EEfull-stack(一 ...

  4. Flash的选择

    算起来自己接触Flash接近4年了. 最開始的2.0,做button,做动画,做导航. 后来用3.0做动画,做相冊.做毕业设计,做课件. 然后到公司做2.0的动画,模板开发,效果设计. 似乎又回到了原 ...

  5. IP协议解读(三)

    今天我们来介绍网络层中的ICMP协议 ICMP报文格式 图一: 从图片上我们能够分析出.前三位的字段都是固定的.8位类型字段,8位代码字段.16位校验和字段.其它字段因ICMP报文类型不同而不同.8位 ...

  6. SSAO + FXAA

    如今已经完毕了渲染器的屏幕空间环境光遮挡(SSAO)算法和FXAA高速反走样算法,等有时间就把当中的相关原理和当中遇到的问题进行总结发表.

  7. OpenLayers学习笔记3——使用jQuery UI美化界面设计

    PC端软件在开发是有较多的界面库能够选择,比方DevExpress.BCG.DotNetBar等,能够非常方便快捷的开发出一些炫酷的界面,近期在学习OpenLayers.涉及到web前端开发,在设计界 ...

  8. spark transform系列__sortByKey

    该函数主要功能:通过指定的排序规则与进行排序操作的分区个数,对当前的RDD中的数据集按KEY进行排序,并生成一个SHUFFLEdrdd的实例,这个过程会运行shuffle操作,在运行排序操作前,sor ...

  9. 转换Arcgis Server REST接口实现OL2直接调用

    概述: 本文解说怎样通过Arcgis Server REST 的导出地图(Export)接口.实如今OL2中直接以WMS的方式调用Arcgis Server REST服务. 实现思路: 1.rest的 ...

  10. 2015.04.20,外语,读书笔记-《Word Power Made Easy》 11 “如何辱骂敌人” SESSION 30

    1.brothers and sisters, wives and husbands Frater: brothers; soror: sister; uxor: wife; maritus: hus ...