[Ynoi2015]我回来了
题目大意:
给定一张无向无权图,每次给定若干个二元组\((x_i,y_i)\),定义点\(u\)满足条件,当且仅当存在\(i\),并满足\(dist(u,x_i)\leqslant y_i\)(\(dist(u,v)\)表示\(u,v\)两点的距离)。每次询问求满足条件的点个数。
解题思路:
在太阳西斜的这个世界里,置身天上之森。等这场战争结束之后,不归之人与望眼欲穿的众人, 人人本着正义之名,长存不灭的过去、逐渐消逝的未来。我回来了,纵使日薄西山,即便看不到未来,此时此刻的光辉,盼君勿忘。————世界上最幸福的女孩
珂朵莉,最可爱了呢。
---
我们定义\(f[i][j]\)为从点\(i\)出发,最短路小于等于\(j\)的点的集合。这个可以用bitset压位存储。
计算\(f[i][j]\),我们首先要知道任意两点对间最短路,然后计算出从每个点出发,最短路恰好为\(j\)的点的集合。然后前缀或一遍就是\(f[i][j]\)。
计算都可以在\(O(\dfrac{n^3}{\omega})\)的复杂度内完成。
而求任意点对间最短路,就从每个点开始BFS一遍即可。时间复杂度\(O(n(n+m))\)。
最后处理询问的时候,就把每个\((x,y)\)对应的\(f[x][y]\)都取并集,然后求其中1的个数即可。时间复杂度\(O(\dfrac{n\sum a}{\omega})\)。
总时间复杂度\(O(n(n+m)+\dfrac{n^3+n\sum a}{\omega})\),空间复杂度\(O(\dfrac{n^3}{\omega})\)。
然后听说这道题卡前向星
似乎是由于访问连续内存会比较快的原因,用vector存边就跑的飞快,而前向星就T飞了。
C++ Code:
#include<bitset>
#include<cstdio>
#include<cctype>
#include<queue>
#include<vector>
#define N 1003
#ifdef ONLINE_JUDGE
struct istream{
char buf[23333333],*s;
inline istream(){
buf[fread(s=buf,1,23333330,stdin)]='\n';
fclose(stdin);
}
inline istream&operator>>(int&d){
d=0;
for(;!isdigit(*s);++s);
while(isdigit(*s))
d=(d<<3)+(d<<1)+(*s++^'0');
return*this;
}
}cin;
#else
#include<iostream>
using std::cin;
#endif
std::bitset<N>a[N][N];
int n,m,q,dis[N][N];
std::vector<int>G[N];
void bfs(int s,int*dis){
for(int i=1;i<=n;++i)dis[i]=1002;
static std::queue<int>q;
dis[s]=0;
for(q.push(s);!q.empty();){
int u=q.front();q.pop();
for(int i:G[u])
if(dis[i]==1002){
dis[i]=dis[u]+1;
q.push(i);
}
}
for(int i=1;i<=n;++i)
a[s][dis[i]].set(i);
for(int i=1;i<=n;++i)a[s][i]|=a[s][i-1];
}
int main(){
cin>>n>>m>>q;
while(m--){
int u,v;
cin>>u>>v;
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=1;i<=n;++i)bfs(i,dis[i]);
while(q--){
std::bitset<N>ans;
int x,u,v;
cin>>x;
while(x--){
cin>>u>>v;
if(v>n)v=n;
ans|=a[u][v];
}
printf("%d\n",ans.count());
}
return 0;
}
[Ynoi2015]我回来了的更多相关文章
- 【题解】Luogu P5068 [Ynoi2015]我回来了
众所周知lxl是个毒瘤,Ynoi道道都是神仙题,这道题极其良心,题面好评 原题传送门 我们先珂以在\(O(n^2)\)的时间内bfs求出任意两点距离 我们考虑如何计算从一个点到所有点的最短路长度小于等 ...
- luoguP5068 [Ynoi2015]我回来了
https://www.luogu.org/problemnew/show/P5068 ynoi 中的良心题啊 考虑用 bitset 来维护里一个点距离小于 $ y_i $ 的点,那么答案就是一堆 b ...
- [洛谷P5068][Ynoi2015]我回来了
题目大意:给你一张$n(n\leqslant10^3)$个点$m(m\leqslant10^5)$个点的无向无权图,多组询问,每次询问给你一些二元组$(x_i,y_i)$,求有多少个$u$于至少一个二 ...
- P5068 [Ynoi2015]我回来了
传送门 解锁成就:ynoi的题目都做到过原题 因为\(n\)很小,我们可以用\(sss[u][i]\)表示到点\(u\)的距离不超过\(i\)的点的集合,这个可以用bitset存,然后先一遍bfs,再 ...
- Luogu P5068 [Ynoi2015]我回来了
题目 Ynoi难得的水题. 首先我们可以\(O(n^2)\)地求出任意两点之间的距离. 然后我们可以\(O(n^3)\)地求出对于任意一个点\(u\),跟它距离\(\le d\)的点的集合. 然后对于 ...
- 「Ynoi2015」我回来了
「Ynoi2015」我回来了 这东西已经不是 Ynoi 了,因为太水被嫌弃了. 如何提升自己的数据结构能力?从Ynoi做起 题目链接 其实这个题很小清新的辣,而且不卡常. 由于边权为 \(1\),所以 ...
- Android 打开方式选定后默认了改不回来?解决方法(三星s7为例)
Android 打开方式选定后默认了改不回来?解决方法(三星s7为例) 刚刚在测试东西,打开一个gif图,然后我故意选择用支付宝打开,然后...支付宝当然不支持,我觉得第二次打开它应该还会问我,没想到 ...
- [分享] 很多人手机掉了,却不知道怎么找回来。LZ亲身经历讲述手机找回过程,申请加精!
文章开头:(LZ文笔不好,以下全部是文字描述,懒得配图.因为有人说手机掉了,他们问我是怎么找回来的.所以想写这篇帖子.只不过前段时间忙,没时间.凑端午节给大家一些经验) 还是先谢谢被偷经历吧!5月22 ...
- 如何使用Retrofit获取服务器返回来的JSON字符串
有关Retrofit的简单集成攻略,大家可以参考我此前的一篇文章有关更多API文档的查阅请大家到Retrofit官网查看. 在大家使用网络请求的时候,往往会出现一种情况:需要在拿到服务器返回来的JSO ...
随机推荐
- 极光推送案例-PushExample-Jpush
ssh - maven - java项目-极光注冊id完毕推送 这是我学习时的步骤: 1:去极光推送平台注冊账号,自己能够去注冊(一般公司会帮助完毕注冊) 地址:https://www.jpush.c ...
- Codeforces Round #332 (Div. 2)D. Spongebob and Squares 数学
D. Spongebob and Squares Spongebob is already tired trying to reason his weird actions and calcula ...
- 创造HTTPS的是个神
HTTP 是一个明文传输的协议,很多网络监听工具都可以轻易窃取网络中传输的用户信息,如密码,信用卡, 直到后来发明HTTPS, 世界一下子安静了 Why HTTPS? HTTPS可以保证用户提交的信息 ...
- java 分布式锁
转自:http://www.hollischuang.com/archives/1716 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CA ...
- P4135 作诗——分块
题目:https://www.luogu.org/problemnew/show/P4135 分块大法: 块之间记录答案,每一块记录次数前缀和: 注意每次把桶中需要用到位置赋值就好了: 为什么加了特判 ...
- 76.培训记录信息 Extjs 页面
1.培训记录信息页面jsp <%@ page language="java" import="java.util.*" pageEncoding=&quo ...
- Gym - 101981G The 2018 ICPC Asia Nanjing Regional Contest G.Pyramid 找规律
题面 题意:数一个n阶三角形中,有多少个全等三角形,n<=1e9 题解:拿到题想找规律,手画开始一直数漏....,最后还是打了个表 (打表就是随便定个点为(0,0),然后(2,0),(4,0), ...
- PHP无限级分类实现(递归+非递归)
<?php /** * Created by PhpStorm. * User: qishou * Date: 15-8-2 * Time: 上午12:00 */ //准备数组,代替从数据库中检 ...
- BZOJ 1914 计算几何
思路: 我们可以算不合法的 如果三个点都在同一侧 就不合法.. 用总方案数减掉就可以了 (有神奇的实现方法...) //By SiriusRen #include <cmath> #inc ...
- 2.Dubbo开源分布式服务框架(JAVA RPC)
1. Dubbo介绍 Dubbox是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能RPC(即远程调用)实现服务的输出和输入功能, 可以和Spring框架无集成.Dubbo是一款高性能 ...