题目描述:

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

  解题思路:

  当只有一级台阶时,f(1)=1;当有两级台阶时,f(2)=f(2-1)+f(2-2);一般情况下,当有n级台阶时,f(n)=f(n-1)+f(n-2)+···+f(n-n)=f(0)+f(1)+···+f(n-1),同理,f(n-1)=f(0)+f(1)+···+f(n-2).

  因此,根据上述规律可以得到:f(n)=2*f(n-1)。这时一个递推公式,同样为了效率问题,用循环可以实现。

  编程实现(Java):

	public int JumpFloorII(int target) {
if(target<=0)
return 0;
if(target==1)
return 1;
int res=1;
for(int i=2;i<=target;i++)
res=2*res;
return res;
}

【剑指Offer】9、变态跳台阶的更多相关文章

  1. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  2. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  3. 剑指OFFER之变态跳台阶(九度OJ1389)

    题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...

  4. 剑指offer:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...

  5. 剑指Offer 9. 变态跳台阶 (递归)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...

  6. 牛客网-《剑指offer》-变态跳台阶

    C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析 ...

  7. 【剑指offer】变态跳台阶

    一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...

  8. 剑指offer 09变态跳台阶

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...

  9. [剑指Offer] 9.变态跳台阶

     题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必 ...

  10. 《剑指offer》变态跳台阶

    一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...

随机推荐

  1. Windows安装php Oracle扩展

    前言 去IOE的浪潮下,很多大型公司古董级的系统还在使用IOE设备.新东家有些年头的系统都是使用Oracle数据库,为了省事,新架构下的业务直接通过编程语言API操作Oracle数据库,安装相关扩展对 ...

  2. java获取类名不包括路径

    class.getSimpleName(),就能获得仅仅的类名 class.getName()获得的是全路径的类名

  3. FOJ 10月赛题 FOJ2198~2204

    A题. 发现是递推可以解决这道题,a[n]=6*a[n-1]-a[n-2].因为是求和,可以通过一个三维矩阵加速整个计算过程,主要是预处理出2^k时的矩阵,可以通过这道题 #include <i ...

  4. Delphi 中控件路径加入不进去解决方法

    使用notepa++打开project中的*.dproj文件,在里面找到相似例如以下的区域 <DCC_UnitSearchPath>T:\BusinessSkinForm1006Sourc ...

  5. 配置Java连接池的两种方式:tomcat方式以及spring方式

    1. tomcat方式:在context.xml配置连接池,然后在web.xml中写配置代码(也能够在server.xml文件里配置连接池).这两种方法的差别是:在tomcat6版本号及以上中cont ...

  6. jquery文件批量上传控件Uploadify3.2(java springMVC)

    人比較懒  有用为主 不怎么排版了 先放上Uploadify的官网链接:http://www.uploadify.com/  -->里面能够看到PHP的演示样例,属性说明,以及控件下载地址.分f ...

  7. Windows 驱动开发 - 8

    最后的一点开发工作:跟踪驱动. 一.驱动跟踪 1. 包括TMH头文件 #include "step5.tmh" 2. 初始化跟踪 在DriverEntry中初始化. WPP_INI ...

  8. 您必须先调用“WebSecurity.InitializeDatabaseConnection”方法。。。

    有如下代码: [Authorize] public ActionResult Index() { ViewBag.ShowList = ShowList.GetShowList(WebSecurity ...

  9. android有用代码片段

    一.  获取系统版本号: [java] view plaincopy PackageInfo info = this.getPackageManager().getPackageInfo(this.g ...

  10. 优先队列 + 并查集 + 字典树 + 欧拉回路 + 树状数组 + 线段树 + 线段树点更新 + KMP +AC自动机 + 扫描线

    这里给出基本思想和实现代码 . 优先队列 : 曾经做过的一道例题       坦克大战 struct node { int x,y,step; friend bool operator <(no ...