【剑指Offer】9、变态跳台阶
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解题思路:
当只有一级台阶时,f(1)=1;当有两级台阶时,f(2)=f(2-1)+f(2-2);一般情况下,当有n级台阶时,f(n)=f(n-1)+f(n-2)+···+f(n-n)=f(0)+f(1)+···+f(n-1),同理,f(n-1)=f(0)+f(1)+···+f(n-2).
因此,根据上述规律可以得到:f(n)=2*f(n-1)。这时一个递推公式,同样为了效率问题,用循环可以实现。
编程实现(Java):
public int JumpFloorII(int target) {
if(target<=0)
return 0;
if(target==1)
return 1;
int res=1;
for(int i=2;i<=target;i++)
res=2*res;
return res;
}
【剑指Offer】9、变态跳台阶的更多相关文章
- [剑指Offer]2.变态跳台阶
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...
- Go语言实现:【剑指offer】变态跳台阶
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...
- 剑指OFFER之变态跳台阶(九度OJ1389)
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...
- 剑指offer:变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...
- 剑指Offer 9. 变态跳台阶 (递归)
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...
- 牛客网-《剑指offer》-变态跳台阶
C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析 ...
- 【剑指offer】变态跳台阶
一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...
- 剑指offer 09变态跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...
- [剑指Offer] 9.变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必 ...
- 《剑指offer》变态跳台阶
一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...
随机推荐
- OpenGL ES2.0 基本编程
1. EGL OpenGL ES命令须要一个rendering context和一个drawing surface. Rendering Context: 保存当前的OpenGL ES状态. Draw ...
- SpringMVC案例2----基于spring2.5的注解实现
和上一篇一样,首先看一下项目结构和jar包 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYmVuamFtaW5fd2h4/font/5a6L5L2T/fo ...
- @RestController注解的使用
示例代码:/*@ResponseBody@Controller*/@RestControllerpublic class HelloController { @RequestMapping(" ...
- oc54--auatorelease应用场景
// // Person.h #import <Foundation/Foundation.h> @interface Person : NSObject @property (nonat ...
- bzoj 1026 [ SCOI2009 ] windy数 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1026 蛮简单的数位DP,预处理 f[i][j] 表示 i 位数,以 j 开头的 windy ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- php文件,文件夹
例子代码:<?php$f='/www/htdocs/index.html';$path_parts = pathinfo($f);echo $path_parts['dirname'], &qu ...
- centos vi和vim用法
所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体颜色辨别语法的正 ...
- codevs1060 搞笑世界杯(概率dp)
1060 搞笑世界杯 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 随着世界杯小组赛的结束,法国,阿根廷等世界 ...
- [Apple开发者帐户帮助]五、管理标识符(1)注册应用程序ID
一个应用程序ID标识的配置设定档中的应用程序.它是一个由两部分组成的字符串,用于标识来自单个开发团队的一个或多个应用程序.有两种类型的应用程序ID:用于单个应用程序的显式应用程序ID,以及用于一组应用 ...