题意:

  给你一个文本串,和一些模式串,每个模式串都有一个价值,让你选一些模式串来组成文本串,使获得的价值最大。每个模式串不止能用一次。

思路:

  多重背包,枚举文本串的每个位置和模式串,把该模式串拼接在当前位置,看下一个位置是否能得到更优值。但是,存在很多模式串不能拼在当前位置的,无效状态。所以可以用Trie树来优化转移。

代码:

  

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <functional>
#include <cctype>
#include <time.h> using namespace std; const int INF = <<;
const int MAXN = 1e5+;
const int MAXLEN = ;
const int MAXNODE = 1e5+;; struct Trie {
int ch[MAXNODE][];
int val[MAXNODE], use; inline void init() {
for (int i = ; i < ; i++) ch[][i] = ;
val[] = ;
use = ;
}
inline int New() {
for (int i = ; i < ; i++) ch[use][i] = ;
val[use] = ;
return use++;
}
inline int idx(char c) {
return c - 'a';
}
void insert(char str[], int v) {
int len = strlen(str);
int p = ;
for (int i = ; i < len; i++) {
int c = idx(str[i]);
if (!ch[p][c]) ch[p][c] = New();
p = ch[p][c];
}
val[p] = max(val[p], v);
}
int solve(char S[], int dp[]) {
int len = strlen(S);
for (int i = ; i <= len; i++) dp[i] = -;
dp[] = ;
for (int i = ; i < len; i++) {
if (dp[i]<) continue;
for (int j = i, p = ; j <= len; j++) {
int c = idx(S[j]);
if (val[p]) dp[j] = max(dp[j], dp[i]+val[p]);
p = ch[p][c];
if (p==) break;
}
}
return max(dp[len], );
}
}; Trie solver; char S[MAXN], P[MAXLEN];
int dp[MAXN];
int m, v; int main() {
#ifdef Phantom01
freopen("HNU13108.txt", "r", stdin);
#endif //Phantom01 while (scanf("%s", S)!=EOF) {
scanf("%d", &m);
solver.init();
for (int i = ; i < m; i++) {
scanf("%s%d", P, &v);
solver.insert(P, v);
}
printf("%d\n", solver.solve(S, dp));
} return ;
}

HNU 13108 Just Another Knapsack Problem DP + Trie树优化的更多相关文章

  1. UVALive - 3942 (DP + Trie树)

    给出一个长度不超过300000的字符串 S,然后给出 n 个长度不超过100的字符串. 如果字符串可以多次使用,用这 n 个字符串组成 S 的方法数是多少? 比如样例中,abcd = a + b + ...

  2. FZU-2214 Knapsack problem(DP使用)

    Problem 2214 Knapsack problem Accept: 863    Submit: 3347Time Limit: 3000 mSec    Memory Limit : 327 ...

  3. Codeforces 615C Running Track(DP + Trie树)

    题目大概说给两个串,问最少要用多少个第一个串的子串(可以翻转)拼成第二个串. UVa1401,一个道理..dp[i]表示前缀i拼接成功所需最少的子串,利用第一个串所有子串建立的Trie树往前枚举转移. ...

  4. UVa1401 Remember the Word(DP+Trie树)

    题目给定一个字符串集合有几种方式拼成一个字符串. dp[i]表示stri...strlen-1的方案数 dp[len]=1 dp[i]=∑dp[j](stri...strj-1∈SET) 用集合的字符 ...

  5. 洛谷:P2292 [HNOI2004]L语言(DP+Trie树)

    P2292 [HNOI2004]L语言 题目链接:https://www.luogu.org/problemnew/show/P2292 题目描述 标点符号的出现晚于文字的出现,所以以前的语言都是没有 ...

  6. CF1625D - Binary Spiders[trie树优化dp]

    官方题解 题意:给数列a[],选择尽量多的数满足任意两个异或起来<=k 1625D - Binary Spiders 思路:首先,将数列排序得到,然后升序取得的值的任意两个最小值为相邻两个异或的 ...

  7. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  8. HDU4719-Oh My Holy FFF(DP线段树优化)

    Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T ...

  9. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

随机推荐

  1. luogo p3379 【模板】最近公共祖先(LCA)

    [模板]最近公共祖先(LCA) 题意 给一个树,然后多次询问(a,b)的LCA 模板(主要参考一些大佬的模板) #include<bits/stdc++.h> //自己的2点:树的邻接链表 ...

  2. BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)

    题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...

  3. SQL的运算符优先级

    注: 1.乘除的优先级高于加减: 2.同一优先级运算符从左向右执行: 3.括号内的运算先执行.

  4. POJ 1185 炮兵阵地 (状压dp)(棋盘dp)

    这题和poj 3254很像,但是更复杂了一些 都属于棋盘里放东西,然后又各种各样的限制,然后求方案或者最大值 (1)上一道题距离要大于1,这道题是大于2.所以判断的时候变成 !(x & (x ...

  5. C#WIFI搜索与连接

    1.功能搜索WIFI并连接 2.所用工具及资源:VS2012 Managed Wifi API(即:引用ManagedWifi.dll文件地址:http://files.cnblogs.com/fil ...

  6. Linux Mint 17.1 安装全配置

    Linux Mint 17.1 安装全配置 I. 前言 由于自己的本子出现了一些故障需要重新安装系统,就上网看看今年4,5月份发布的一些新的发行版来试试.原先电脑上安装的是opensuse13.2, ...

  7. SQL SERVER-安装和卸载

    卸载后无法正常安装SQL SERVER 删除了本机的SQL SERVER以后,我发现我本机的SQL SERVER 再也安装不上了,这个一个比较严重的问题,要每天定时备份数据库到指定的地方才能防止数据丢 ...

  8. 使用excel进行数据挖掘(6)---- 预測

    在配置环境后,能够使用excel进行数据挖掘. 环境配置问题可參阅: http://blog.csdn.net/xinxing__8185/article/details/46445435 例子 DM ...

  9. JavaScript DOM(一)

    文件夹: DOM家谱树 节点的基本属性和方法 document与getElement方法 DOM家谱树 DOM能够将不论什么HTML或XML文档描绘成一个由多层次节点构成的结构.当中节点被分为几种不同 ...

  10. ES API 备忘

    本文所列的所有API在ElasticSearch文档是有详尽的说明,但它的结构组织的不太好. 这篇文章把ElasticSearch API用表格的形式供大家参考. https://www.iteblo ...