caioj 1152 快速求模 (快速幂)
(1)开long long,不然中间结果会溢出
(2)注意一开始的初始化,保险一点。
#include<cstdio>
#include<cctype>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
void read(ll& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-1'); f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
ll cal(ll a, ll b, ll p)
{
ll ret = 1 % p; a %= p; //注意这里
while(b)
{
if(b & 1) ret = ret * a % p;
b >>= 1;
a = a * a % p;
}
return ret;
}
int main()
{
ll a, b, p;
read(a), read(b), read(p);
printf("%lld\n", cal(a, b, p));
return 0;
}
caioj 1152 快速求模 (快速幂)的更多相关文章
- NYOJ--102--次方求模(快速求幂取模)
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...
- hdu 2065 "红色病毒"问题(快速幂求模)
n=1 --> ans = 2 = 1*2 = 2^0(2^0+1) n=2 --> ans = 6 = 2*3 = 2^1(2^1+1) n=3 --> ans = 20 ...
- NYOJ-676小明的求助,快速幂求模,快速幂核心代码;
小明的求助 时间限制:2000 ms | 内存限制:65535 KB 难度:2 描述 小明对数学很有兴趣,今天老师出了道作业题,让他求整数N的后M位,他瞬间感觉老师在作弄他,因为这是so easy ...
- nyoj 102 次方求模【快速幂】
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...
- nyoj--102--次方求模(快速幂)
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测试只有一行,其 ...
- nyoj 102 次方求摸 快速幂
点击打开链接 次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测 ...
- 快速幂取模&快速乘取模
快速幂取模 即快速求出(a^b)mod c 的值.由于当a.b的值非常大时直接求a^b可能造成溢出,并且效率低. 思路 原理就是基于\(a*b \% c = ((a \% c)*(b \% c))\% ...
- 快速求排列C(m,n)加取模
快速求排列组合C(m,n)%mod 写在前面: 1. 为防止产生n和m的歧义,本博文一律默认n >= m 2. 本博文默认mod = 10^6+3 3. 本博文假设读者已知排列组合公式 C(m, ...
- ahjesus js 快速求幂
/* 快速幂计算,传统计算方式如果幂次是100就要循环100遍求值 快速幂计算只需要循环7次即可 求x的y次方 x^y可以做如下分解 把y转换为2进制,设第n位的值为i,计算第n位的权为x^(2^(n ...
随机推荐
- css——权重叠加
权重叠加 在下面的一段代码中,第一个样式body b有两个标签,第二个有一个标签b.两个中都有color,会应用哪一个呢?果是 那下面的代码会显示什么样的结果 结果是 应用的事body b中的colo ...
- 安装node-sass及报错后解决方案
使用npm install 命令安装node-sass时,经常出现安装失败的情况.原因在于npm服务器在美国,还有就是某强大的防火墙作用.导致模块无法下载. 1 npm install node-sa ...
- java对word文档的操作(提取标题和内容等)-直接操作或poi工具包或freemarker+xml或html转word
1,java自带工具包实现对word的排版和写入 import java.awt.Color; import java.io.FileNotFoundException; import java.io ...
- Unity 多场景打包
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50580641 作者:car ...
- 关于@SuppressWarnings("unchecked")注解
解释一: 屏蔽某些编译时的警告信息 在强制类型转换的时候编译器会给出警告 加上程序代码 @SuppressWarnings("unchecked& ...
- IntelliJ IDEA could not autowire no beans of 'Decoder'
IntelliJ IDEA could not autowire no beans of 'Decoder' 学习了:http://blog.csdn.net/u012453843/article/ ...
- ubuntu系统AndroidStudio改动内存大小
位于android-studio/bin文件夹下的studio64.vmoptions和studio.vmoptions文件. 把Xms,Xmx,-XX:MaxPermSize.-XX:Reserve ...
- HDU 4415 Assassin's Creed(贪心)
pid=4415">HDU 4415 题意: 壮哉我Assassin! E叔有一柄耐久度为m的袖剑,以及n个目标士兵要去解决. 每解决掉一个士兵,消耗袖剑Ai的耐久度.且获得该士兵的武 ...
- 【Linux】进程调度概述
1 可运行队列 (基于实时进程调度) 调度程序中最主要的数据结构式运行队列(runqueue).可运行队列是给定处理器上的可运行进程的链表,每一个处理器一个. 每一个可投入运行的进程都唯一的归属于一个 ...
- Linux内核中进程上下文和中断上下文的理解
參考: http://www.embedu.org/Column/Column240.htm http://www.cnblogs.com/Anker/p/3269106.html 首先明白一个概念: ...