caioj 1152 快速求模 (快速幂)
(1)开long long,不然中间结果会溢出
(2)注意一开始的初始化,保险一点。
#include<cstdio>
#include<cctype>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
void read(ll& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-1'); f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
ll cal(ll a, ll b, ll p)
{
ll ret = 1 % p; a %= p; //注意这里
while(b)
{
if(b & 1) ret = ret * a % p;
b >>= 1;
a = a * a % p;
}
return ret;
}
int main()
{
ll a, b, p;
read(a), read(b), read(p);
printf("%lld\n", cal(a, b, p));
return 0;
}
caioj 1152 快速求模 (快速幂)的更多相关文章
- NYOJ--102--次方求模(快速求幂取模)
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...
- hdu 2065 "红色病毒"问题(快速幂求模)
n=1 --> ans = 2 = 1*2 = 2^0(2^0+1) n=2 --> ans = 6 = 2*3 = 2^1(2^1+1) n=3 --> ans = 20 ...
- NYOJ-676小明的求助,快速幂求模,快速幂核心代码;
小明的求助 时间限制:2000 ms | 内存限制:65535 KB 难度:2 描述 小明对数学很有兴趣,今天老师出了道作业题,让他求整数N的后M位,他瞬间感觉老师在作弄他,因为这是so easy ...
- nyoj 102 次方求模【快速幂】
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...
- nyoj--102--次方求模(快速幂)
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测试只有一行,其 ...
- nyoj 102 次方求摸 快速幂
点击打开链接 次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测 ...
- 快速幂取模&快速乘取模
快速幂取模 即快速求出(a^b)mod c 的值.由于当a.b的值非常大时直接求a^b可能造成溢出,并且效率低. 思路 原理就是基于\(a*b \% c = ((a \% c)*(b \% c))\% ...
- 快速求排列C(m,n)加取模
快速求排列组合C(m,n)%mod 写在前面: 1. 为防止产生n和m的歧义,本博文一律默认n >= m 2. 本博文默认mod = 10^6+3 3. 本博文假设读者已知排列组合公式 C(m, ...
- ahjesus js 快速求幂
/* 快速幂计算,传统计算方式如果幂次是100就要循环100遍求值 快速幂计算只需要循环7次即可 求x的y次方 x^y可以做如下分解 把y转换为2进制,设第n位的值为i,计算第n位的权为x^(2^(n ...
随机推荐
- JWT加密
JWT是一种加密算法,为了防止请求的信息在传输途中被拦截修改 JWT的引用: install-package jwt JWF由三部分组成:Header,Payload,Signature Payloa ...
- Python笔记25-----------创建二维列表【浅copy】和转置
一.创建二维列表 1.二维列表创建第二维的时候,如果采用*2这种方式,这是一种浅复制的方式,同时引用到同一个list,如上图的C. 这种形式,不方便修改C[ i ][ j ]的数据,如果改C[ 0 ] ...
- iOS开发——自动填充短信验证码
苹果在iOS 12,改进了一个很人性化的小细节.在做短信验证码功能的时候,自动获取短信中的验证码,然后点击填充即可.不用再向之前那样麻烦,自己看到弹出的短信信息后,死记硬背,再一个个敲上去,害怕背错了 ...
- H5图片上传、压缩
1.注册input file标签的onchange事件: 2.检查图片格式: 3.检查图片大小: 4.压缩图片 5.上传图片至服务器: 前端代码: document.getElementById('i ...
- POJ 3128
置换的开方. 看看Pan的那篇集训论文.此处,可以想到,开方时,由于gcd(l,2),则必然有若是循环长度为偶数,必定是成对出现的.若是奇数,既可以是偶数也可以是奇数,因为,通过二次方后,循环长度为偶 ...
- HDU 3723
把向上看成+1,向下看成-1.可以知道符合卡特兰数的一般解释了.记作Can(i) 中间平过的即是0.亦即是C(n,2*i),i表示向上的数. 于是总的就是sum(C(n,2*i)*Can(i)),i从 ...
- Pointcut is not well-formed: expecting 'name pattern' at character position 36
Pointcut is not well-formed: expecting 'name pattern' at character position 36 学习了:http://blog.csdn. ...
- BZOJ 2005 [Noi2010]能量採集 (容斥)
[Noi2010]能量採集 Time Limit: 10 Sec Memory Limit: 552 MB Submit: 2324 Solved: 1387 [id=2005"> ...
- 【Linux】进程调度概述
1 可运行队列 (基于实时进程调度) 调度程序中最主要的数据结构式运行队列(runqueue).可运行队列是给定处理器上的可运行进程的链表,每一个处理器一个. 每一个可投入运行的进程都唯一的归属于一个 ...
- POJ 1281 MANAGER
MANAGER Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Description O ...