Leetcode--easy系列9
#198 House Robber
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it
will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
去掉故事背景就是说,一个含有n个元素的数组(元素值当然大于0),从中取出m个位置的元素,要求相邻两个位置的元素最多仅仅能取一个。
求能获得元素值和的最大值
典型的DP问题。
自顶向下分析问题。n个元素的数组取和的最大值 f(n) ,能够转换为
max{ f(n-1) , f(n-2)+nums[n] }
利用数组a[n]保存中间子问题结果,算法例如以下:
注:依据故事背景。一条街上的住户不超过1000家吧。。。
//0ms
int rob(int* nums, int numsSize) {
int i=0,t1,t2;
int a[1000]={0};
if(numsSize==1)
{
a[0] = nums[0];
return a[0];
}
if(numsSize==2)
{
a[1] = (nums[0]>=nums[1]) ? nums[0]:nums[1];
return a[1];
}
if(numsSize==3)
{
if(nums[0]+nums[2]>=nums[1])
a[3] = nums[0]+nums[2];
else
a[3] = nums[1];
return a[3];
}
if(numsSize>3)
{
a[0] = nums[0];
a[1] = (nums[0]>=nums[1]) ? nums[0]:nums[1];
if(nums[0]+nums[2]>=nums[1])
a[2] = nums[0]+nums[2];
else
a[2] = nums[1]; for(i=3;i<numsSize;i++)
{
//t1 = rob(nums,numsSize-1);
//t2 = rob(nums,numsSize-2)+nums[numsSize-1];
t1 = a[i-1];
t2 = a[i-2]+nums[i];
a[i] = (t1>=t2)? t1:t2;
}
}
return a[numsSize-1];
}
# 202 Happy Number
Write an algorithm to determine if a number is "happy".
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle
which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
Example: 19 is a happy number
- 12 + 92 = 82
- 82 + 22 = 68
- 62 + 82 = 100
- 12 + 02 + 02 =
1
Happy Number 指的是数n的每一位的平方和能通过经过有限次循环后和为 1
仅仅要出现循环就不是Happy Number
对于int型(10位)每一位平方和 小于: 9^2 * 10 = 810 ;能够用一个数组保存和 ,当再次出现该值时说明出现了一个循环,返回false
//0ms
bool isHappy(int n) {
int hash[810]={0};
int i=1,new_n=0;
if(n==1)
return true;
while(n!=1)
{
new_n = 0;
while(n)
{
new_n += (n%10)*(n%10);
n = n/10;
}
n = new_n; if(n==1)
return true; if(hash[n]==1)
return false;
else
hash[n] = 1;
}
}
基于事实1 是 Happy Number 而 2,3,4,5,6均不是Happy Number 为了使空间复杂度变为为O(1),可採用例如以下算法
//0ms
bool isHappy(int n)
{
int next;
while(n > 6)
{
next = 0;
while(n)
{
next += (n%10) * (n%10);
n /= 10;
}
n = next;
}
return n == 1;
}
#203 Remove Linked List Elements
Remove all elements from a linked list of integers that have value val.
Example
Given: 1 --> 2 --> 6 --> 3 --> 4 --> 5 --> 6, val = 6
Return: 1 --> 2 --> 3 --> 4 --> 5
<span style="font-size:10px;">//12ms
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode* removeElements(struct ListNode* head, int val) {
struct ListNode *newhead,*p,*q;
if(!head)
return NULL;
newhead->next = head; //简化代码,加入头结点 q p
q = newhead;
p = head;
while(p)
{
if(p->val==val)
q->next = p->next;//q 不变 p后移
else
q = p;// q p 都后移
p = p->next;
}
return newhead->next;
}</span>
#204 Count Primes
Count
the number of prime numbers less than a non-negative number, n.
求1~n-1之间素数的个数,注意1不是素数
推断 n 是一个素数的方法是,不能被
2 ~ sqrt(n) 之间的数整除。即约数仅仅有1和其本身
在Leetcode Discuss中看到例如以下解法:时间和空间复杂度都接近O(n)
https://leetcode.com/discuss/34622/my-c-solutions-in-44ms-time-nearly-o-n-and-space-nearly-o-n
//44ms
/*1. trick1 is to use square root of n.
2. trick2 is not to use non-prime numbers as the step
3. trick3 is to use i*i as the start.
4. trick4 is to use count-- in every loop, avoiding another traversal. */
int countPrimes(int n) {
if(n <= 2) return 0;
if(n == 3) return 1;
bool *prime= (bool*)malloc(sizeof(bool)*n);
int i=0,j=0;
int count = n-2;
int rt = sqrt(n);//trick1
for(j = 0; j < n; j++)
{
prime[j] = 1;
}
for(i = 2; i <= rt; i++)
{
if (prime[i])//trick2
{
for(j=i*i ; j<n ; j+=i)//trick3
{
if (prime[j])
{
prime[j]=0;
count--;//trick4
}
}
}
}
free(prime);
return count;
}
Leetcode--easy系列9的更多相关文章
- hdu 2049 不easy系列之(4)——考新郎
不easy系列之(4)--考新郎 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- LeetCode——single-number系列
LeetCode--single-number系列 Question 1 Given an array of integers, every element appears twice except ...
- HDU 2045不easy系列之三LELE的RPG难题(趋向于DP的递推)
不easy系列之(3)-- LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- hdu1465不easy系列之中的一个(错排)
版权声明:本文为博主原创文章,未经博主同意不得转载. vasttian https://blog.csdn.net/u012860063/article/details/37512659 转载请注明出 ...
- Leetcode算法系列(链表)之删除链表倒数第N个节点
Leetcode算法系列(链表)之删除链表倒数第N个节点 难度:中等给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点.示例:给定一个链表: 1->2->3->4-&g ...
- Leetcode算法系列(链表)之两数相加
Leetcode算法系列(链表)之两数相加 难度:中等给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字.如果,我们将 ...
- leetcode easy problem set
*勿以浮沙筑高台* 持续更新........ 题目网址:https://leetcode.com/problemset/all/?difficulty=Easy 1. Two Sum [4m ...
- [Leetcode] Sum 系列
Sum 系列题解 Two Sum题解 题目来源:https://leetcode.com/problems/two-sum/description/ Description Given an arra ...
- LeetCode 笔记系列16.3 Minimum Window Substring [从O(N*M), O(NlogM)到O(N),人生就是一场不停的战斗]
题目:Given a string S and a string T, find the minimum window in S which will contain all the characte ...
- 决战Leetcode: easy part(51-96)
本博客是个人原创的针对leetcode上的problem的解法,所有solution都基本通过了leetcode的官方Judging,个别未通过的例外情况会在相应部分作特别说明. 欢迎互相交流! em ...
随机推荐
- 小学生都能学会的python(深浅拷贝)
小学生都能学会的python(深浅拷贝) join() 把列表中的每一项用字符串拼接起来 # lst = ["汪峰", "吴君如", "李嘉欣&quo ...
- mysql存储小数
线下不知道什么版本的古董了,经本人亲测,varchar类型的数据,可以直接执行mysql的sum函数. ________________________________________________ ...
- iOS UI16_数据持久化
// // Student.h // UI16_数据持久化 // // Created by dllo on 15/8/19. // Copyright (c) 2015年 zhozhicheng. ...
- 【转载】How to Reset USB Device in Linux
USB devices are anywhere nowadays, even many embedded devices replace the traditional serial devices ...
- 在IDEA中代码自动提示第一个字母大小写必须匹配的解决
在IDEA中代码自动提示第一个字母大小写必须匹配的解决 学习了:http://blog.csdn.net/babys/article/details/41775715 setting>Edito ...
- Activity管理笔记
文章仅记录自己学习该模块时的一点理解,看到哪写到哪.所以特别散. AMS管理四大组件外加进程管理,当中最庞大的算是Activity了吧. 1.AMS中对ActivityStack划分为两类.当中一类是 ...
- Android集成一个新产品时,lunch的product name和device name注意事项
Android系统lunch一个当前的Product大概流程包括下面几个部分: 1. lunch确定TARGET_PRODUCT.一般位于vendor/device/build/target/prod ...
- WPF silverlight获取子控件(获取DataTemplate里的子控件)
public static class VisualTreeExtensions { /// <summary> /// 获取父节点控件 /// </summary> /// ...
- react-route4 按需加载配置心得
本篇文章主要记录笔者项目中使用 react-route + webpack 做路由按需加载的心得,可能只有笔者一个人看,权当日记了. 很久很久以前,react-route还是2.X和3.X版本的时 ...
- ECharts 在winform中使用(访问JS)
ECharts 是百度的一个开源chart 数据统计库,采用html5 + js 编程方式. 有比较好的动态效果,功能很强大.能做出酷弦的效果. ECharts 一般用于web 开发.但winform ...