洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
题目描述
设d(x)为x的约数个数,给定N、M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N∑j=1Md(ij)
输入输出格式
输入格式:
输入文件包含多组测试数据。第一行,一个整数T,表示测试数据的组数。接下来的T行,每行两个整数N、M。
输出格式:
T行,每行一个整数,表示你所求的答案。
输入输出样例
说明
1<=N, M<=50000
1<=T<=50000
有一个定理
$d\left(i,j\right) =\sum _{x|i}\sum _{y|j}\left[ \gcd \left( x,y\right) = 1\right]$
然后大力推公式就好了

后面两项暴力分块预处理
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,M;
int vis[MAXN],prime[MAXN],tot=,mu[MAXN];
long long divv[MAXN];
void GetMu()
{
vis[]=;mu[]=;
for(int i=;i<=N;i++)
{
if(vis[i]==) prime[++tot]=i,mu[i]=-;
for(int j=;j<=tot&&i*prime[j]<=N;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==){mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(int i=;i<=N;i++)
mu[i]+=mu[i-];
for(int i=;i<=N;i++)
for(int j=,nxt;j<=i;j=nxt+)
nxt=i/(i/j),
divv[i]+=(long long )(nxt-j+)*(i/j);
}
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
// freopen("SDOI2015yue.in","r",stdin);
// freopen("SDOI2015yue.out","w",stdout);
#endif
N=;
GetMu();
int QWQ=read();
while(QWQ--)
{
long long ans=;
N=read(),M=read();
if(N>M) swap(N,M);
for(int i=,nxt;i<=N;i=nxt+)
{
nxt=min(N/(N/i),M/(M/i));
ans+=(long long )(mu[nxt]-mu[i-])*divv[N/i]*divv[M/i];
}
printf("%lld\n",ans);
}
return ;
}
洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)的更多相关文章
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- 洛谷P3327 - [SDOI2015]约数个数和
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...
- luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演
题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
随机推荐
- 【Oracle】非RMAN恢复数据文件、控制文件
实验环境:OEL 5.6 oracle 11g(11.2.0.4.0) 注意: system表空间数据文件不能在线recover,需要启动到mount状态再recover: undo表空间数据文件可以 ...
- RFID 知识的学习
* 部分资料来自我们博士的PPT,部分来自网络和他人的论文. * 我们使用的教材是清华大学出版社出版的<智能卡技术(第四版)——IC卡.RFID标签与物联网(清华大学计算机系列教材)>(王 ...
- Oracle中的SAVEPOINT
学习存储过程中使用断点回滚事务时,发现目前网络上存在一个问题,那就是使用断点回滚后,都忘记了一个很重要的事情,提交事务.虽然使用了断点回滚,但是断点回滚不像rollBack或commit一样结束当前事 ...
- mwArray与C++接口
1.Matlab调用C++:http://blog.csdn.net/zouxy09/article/details/20553007 摘录下效果图: 2.mwArray类操作:http://blog ...
- SSM 拦截器验证权限和登录与注销的实现
拦截器的作用在于,比如我们输入 xxx.com/admin 发起请求进入 网站后台或者其他后台页面.我们的拦截器会在 Controller 调用之前进行拦截,至于什么拦截,由我们来写.比如,判断用户 ...
- 理解题意后的UVa340
之前理解题意错误,应该是每一次game,只输入一组答案序列,输入多组测试序列,而之前的错误理解是每一次输入都对应一组答案序列和一组测试序列,下面是理解题意后的代码,但是还是WA,待修改 #includ ...
- Resolving Strong Reference Cycles for Closures
You resolve a strong reference cycle between a closure and a class instance by defining a capture li ...
- Sublime Text 3 Build 3047 安装/插件安装/C编程环境配置
Sublime Text 3 Build 3047 安装 参考:http://sublimetext.iaixue.com/forum.php?mod=viewthread&tid=29 插件 ...
- -ms-,-moz-,-webkit-,-o-含义
transform:rotate(30deg); //统一标识语句 -ms-transform:rotate(30deg); //-ms代表ie内核识别码 -moz-transform:rotate( ...
- Linux下mysql 忘记密码的解决办法
>mysql -u root -p Enter password: ******** Welcome to the MySQL monitor. Commands end with ; or \ ...