题目描述:

  定义数的消除操作为选定[L,R,x],如果数的第L到第R位上的数字都大于等于x,并且这些数都相等,那么该操作是合法的(从低位到高位编号,个位是第一位,百位是第二位……),然后将这些位数上的数减x;否则就是不合法的,不能进行操作。对一个数操作最少的次数使得这个数变成0,这个操作次数称为该数的最小操作数。如:1232的最小操作数为3,一个合法解是[2,2,1],[1,3,2],[4,4,1]。

求L~R中最小操作数为k的数的个数。

例如:132,需要操作3次才能变为0。而131131 => 111131 => 111111 =>0

输入:

  单组测试数据。三个整数L、R和k(1<=L<=R<=10^18,1<=k<=18)

题解:

  典型数位DP

  设定dp[i][j][k] 前i位下所用数字状态j花费次数时k的个数

  注意这里的状态j是指 后面的放入数字能有重复效应的 状态

  例如 313 花费的次数是3 但131花费次数2    两者在第二位的状态 是(3)和(1)

  最后还要注意0不花费

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = , M = 2e6+, inf = 2e9, mod = 1e9+;
int d[N];
long long L,R,k,dp[][<<][],vis[][<<][];
int cal(int p,int i) {
for(int k=i+;k<=;k++) if(p&(<<k)) p^=(<<k);
return p;
}
long long dfs(int dep,int f,int p,int K)
{
if(dep<) return K==k;
if(f&&vis[dep][p][K]) return dp[dep][p][K];
if(f){
long long& ret = dp[dep][p][K];
vis[dep][p][K]=;
for(int i=;i<=;i++)
{
if(p&(<<i)||i==) {
ret+=dfs(dep-,f,cal(p,i),K);
}
else ret+=dfs(dep-,f,cal(p|(<<i),i),K+);
}
return ret;
}
else {
long long ret = ;
for(int i=;i<=d[dep];i++)
{
if(p&(<<i)||i==)
ret+=dfs(dep-,i<d[dep],cal(p,i),K);
else ret+=dfs(dep-,i<d[dep],cal(p|(<<i),i),K+);
}
return ret;
}
}
long long solve(long long x)
{
memset(dp,,sizeof(dp));
memset(vis,,sizeof(vis));
int len = ;
while(x){
d[len++] = x%;
x/=;
}
dfs(len-,,,);
}
int main(){
while(scanf("%lld%lld%lld",&L,&R,&k)!=EOF)
{
printf("%lld\n",solve(R)-solve(L-));
}
return ;
}

51NOD 1623 完美消除 数位DP的更多相关文章

  1. 51nod 1623 完美消除(数位DP)

    首先考虑一下给一个数如何求它需要多少次操作. 显然用一个单调栈就可以完成:塞入栈中,将比它大的所有数都弹出,如果栈中没有当前数,答案+1. 因为数的范围只有0~9,所以我们可以用一个二进制数来模拟这个 ...

  2. 51nod 1232 完美数 数位dp

    1232 完美数 题目来源: 胡仁东 基准时间限制:2 秒 空间限制:131072 KB  如果一个数能够被组成它的各个非0数字整除,则称它是完美数.例如:1-9都是完美数,10,11,12,101都 ...

  3. 51nod 1043 幸运号码(数位dp)

    题目链接:51nod 1043 幸运号码 题解:dp[i][j]表示 i 个数和为 j 的总数(包含0开头情况) dp[i][j] = dp[i-1][j-k] i & 1 :这里用滚动数组节 ...

  4. 51nod 1009 - 数字1的数量 - [数位DP][模板的应用以及解释]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 基准时间限制:1 秒 空间限制:131072 KB 给 ...

  5. 51nod 1042 数位dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1042 1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131 ...

  6. 51nod 1009 数位dp入门

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 1009 数字1的数量 基准时间限制:1 秒 空间限制:13107 ...

  7. [51nod Round 15 B ] 完美消除

    数位DP. 比较蛋疼的是,设a[i]表示第i位上数字,比方说a[1]<a[2]>a[3],且a[1]==a[3]时,这两位上的数可以放在一起搞掉. 所以就在正常的f数组里多开一维,表示后面 ...

  8. 51nod 1009 数字1的数量(数位dp模板)

    给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1.   数位dp的模板题   ...

  9. 51Nod 1009 数字1的个数 | 数位DP

    题意: 小于等于n的所有数中1的出现次数 分析: 数位DP 预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为: if(j == 1) dp[i][j] = dp[i-1][9 ...

随机推荐

  1. linux 的终端字体色和背景色的修改方法(一)

    更改Linux系统终端的颜色主题 随着Linux系统在服务器端的崛起,Linux也在慢慢进军个人桌面系统领域.如果在使用Linux系统的终端时,对其颜色主题不是很满意,该怎么修改颜色的主题呢?今天笔者 ...

  2. LNMP安装成功的界面

    在ubuntu13.10上面安装一个lnmp集成环境. 下面是安装成功的界面. ===========================add nginx and php-fpm on startup ...

  3. Centos6.5更新e1000网卡驱动

    导读 在工作过程中经常遇到linux的操作系统网络不正常的情况,以前没有注意到,今天查看系统日志发现原来是网络驱动的问题.索性直接更新系统,更新网卡 问题:linux系统经常出现断网的情况,重启之后系 ...

  4. ruby开发过程中的小总结

    (1)建表的时候注意保留字 在新建的表里无法插入一列的值, 报错信息是:Can't mass-assign protected attributes,这一列的列名是type,查了一下发现是因为type ...

  5. ajax页面排序的序号问题

    文章是从我的个人博客上粘贴过来的, 大家也可以访问我的主页 www.iwangzheng.com 目前使用的ajax排序是这样的. 每个table , 都要这样声明 ( table 中必须有2个属性: ...

  6. [BZOJ1177][Apio2009]Oil

    [BZOJ1177][Apio2009]Oil 试题描述 采油区域 Siruseri政府决定将石油资源丰富的Navalur省的土地拍卖给私人承包商以建立油井.被拍卖的整块土地为一个矩形区域,被划分为M ...

  7. TortoiseSVN中图标的含义

    今天在使用svn时发现有好多不认识了,所以查了下svn帮助手册.借此总结了下 svn 中图标的含义 一个新检出的工作复本使用绿色的勾做重载.表示Subversion状态 正常. 在开始编辑一个文件后, ...

  8. JS的trim()方法

    去除字符串左右两端的空格,在vbscript里面可以轻松地使用 trim.ltrim 或 rtrim,但在js中却没有这3个内置方法,需要手工编写.下面的实现方法是用到了正则表达式,效率不错,并把这三 ...

  9. RTX登录其他系统

    前台: <html> <head> <title>签名验证</title> <meta http-equiv="Content-Lang ...

  10. CAS单点登录之mysql数据库用户验证及常见问题

    前面已经介绍了CAS服务器的搭建,详情见:搭建CAS单点登录服务器.然而前面只是简单地介绍了服务器的搭建,其验证方式是原始的配置文件的方式,这显然不能满足日常的需求.下面介绍下通过mysql数据库认证 ...