很巧妙的思想

转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html

本题能够想到用最大流做,那真的是太绝了。建模的方法很妙!
题意就是有N头牛,F个食物,D个饮料。
N头牛每头牛有一定的喜好,只喜欢几个食物和饮料。
每个食物和饮料只能给一头牛。一头牛只能得到一个食物和饮料。
而且一头牛必须同时获得一个食物和一个饮料才能满足。问至多有多少头牛可以获得满足。
最初相当的是二分匹配。但是明显不行,因为要分配两个东西,两个东西还要同时满足。
最大流建图是把食物和饮料放在两端。一头牛拆分成两个点,两点之间的容量为1.喜欢的食物和饮料跟牛建条边,容量为1.
加个源点和汇点。源点与食物、饮料和汇点的边容量都是1,表示每种食物和饮料只有一个。
这样话完全是最大流问题了,。

Sample Input

4 3 3
2 2 1 2 3 1  //1号牛喜欢2种食物(1,2)2种饮料(3,1)
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

 /*
POJ 3281 最大流
//源点-->food-->牛(左)-->牛(右)-->drink-->汇点
//精髓就在这里,牛拆点,确保一头牛就选一套food和drink的搭配 */ #include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std; //****************************************************
//最大流模板
//初始化:g[][],start,end
//******************************************************
const int MAXN=;
const int INF=0x3fffffff;
int g[MAXN][MAXN];//存边的容量,没有边的初始化为0
int path[MAXN],flow[MAXN],start,end;
int n;//点的个数,编号0-n.n包括了源点和汇点。 queue<int>q;
int bfs()
{
int i,t;
while(!q.empty())q.pop();//把清空队列
memset(path,-,sizeof(path));//每次搜索前都把路径初始化成-1
path[start]=;
flow[start]=INF;//源点可以有无穷的流流进
q.push(start);
while(!q.empty())
{
t=q.front();
q.pop();
if(t==end)break;
//枚举所有的点,如果点的编号起始点有变化可以改这里
for(i=;i<=n;i++)
{
if(i!=start&&path[i]==-&&g[t][i])
{
flow[i]=flow[t]<g[t][i]?flow[t]:g[t][i];
q.push(i);
path[i]=t;
}
}
}
if(path[end]==-)return -;//即找不到汇点上去了。找不到增广路径了
return flow[end];
}
int Edmonds_Karp()
{
int max_flow=;
int step,now,pre;
while((step=bfs())!=-)
{
max_flow+=step;
now=end;
while(now!=start)
{
pre=path[now];
g[pre][now]-=step;
g[now][pre]+=step;
now=pre;
}
}
return max_flow;
}
int main()
{
int N,F,D;
while(scanf("%d%d%d",&N,&F,&D)!=EOF)
{
memset(g,,sizeof(g));
n=F+D+*N+;
start=;
end=n;
for(int i=;i<=F;i++)g[][i]=;
for(int i=F+*N+;i<=F+*N+D;i++)g[i][n]=;
for(int i=;i<=N;i++)g[F+*i-][F+*i]=;
int k1,k2;
int u;
for(int i=;i<=N;i++)
{
scanf("%d%d",&k1,&k2);
while(k1--)
{
scanf("%d",&u);
g[u][F+*i-]=;
}
while(k2--)
{
scanf("%d",&u);
g[F+*i][F+*N+u]=;
}
}
printf("%d\n",Edmonds_Karp());
}
return ;
}

poj 3281 最大流+建图的更多相关文章

  1. poj 3281 最大流建图

    题目链接:http://poj.org/problem?id=3281 #include <cstdio> #include <cmath> #include <algo ...

  2. [poj 3281]最大流+建图很巧妙

    题目链接:http://poj.org/problem?id=3281 看了kuangbin大佬的思路,还用着kuangbin板子orz   http://www.cnblogs.com/kuangb ...

  3. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  4. poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙

    /** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...

  5. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  6. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  7. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  8. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

  9. poj 1149 Pigs 网络流-最大流 建图的题目(明天更新)-已更新

    题目大意:是有M个猪圈,N个顾客,顾客要买猪,神奇的是顾客有一些猪圈的钥匙而主人MIRKO却没有钥匙,多么神奇?顾客可以在打开的猪圈购买任意数量的猪,只要猪圈里有足够数量的猪.而且当顾客打开猪圈后mi ...

随机推荐

  1. ReactiveCocoa初步

    [self.usernameTextField.rac_textSignal subscribeNext:^(id x) { NSLog(@"%@", x); }]; 打印结果 - ...

  2. ios 判断控制器是否是第一次进入画页的做法

    什么是第一次进入画页,只viewDidLoad一次: 所以只需要在viewDidLoad中加一个标识就行了. 加一个成员变量,或者属性,用来记录这个标识 一旦viewDidLoad后,这个就说明不是第 ...

  3. find只查当前目录 和 -exec和xargs区别

    1.find默认查找当前目录和子目录,通过maxdepth限制只查当前目录: find . -maxdepth 1 -type f -name "*.php" 2. find . ...

  4. python-twisted

    环境:win7 64位,python 2.7.3 安装: http://twistedmatrix.com/Releases/Twisted/14.0/Twisted-14.0.0.win-amd64 ...

  5. fsck检查和修复文件系统

    重视:fsck不能乱用.先要把文件系统umount掉,然后检查.最好启动到单用户模式下fsck. 常见的5种损坏类型 1 未被引用的inode 2 难以置信的超大链接数 3 没有记录在磁盘块映射表中的 ...

  6. ToDo系列

    leetcode http://www.cnblogs.com/TenosDoIt/tag/leetcode/ http://tech-wonderland.net/category/algorith ...

  7. iOS 网络请求中的challenge

    这里有一篇文章,请阅读,感谢作者!http://blog.csdn.net/kmyhy/article/details/7733619 当请求的网站有安全认证问题时,都需要通过 [[challenge ...

  8. (转)SQL SERVER的锁机制(三)——概述(锁与事务隔离级别)

    五.锁与事务隔离级别 事务隔离级别简单的说,就是当激活事务时,控制事务内因SQL语句产生的锁定需要保留多入,影响范围多大,以防止多人访问时,在事务内发生数据查询的错误.设置事务隔离级别将影响整条连接. ...

  9. (转)SQL SERVER的锁机制(一)——概述(锁的种类与范围)

    锁定:通俗的讲就是加锁.锁定是 Microsoft SQL Server 数据库引擎用来同步多个用户同时对同一个数据块的访问的一种机制. 定义:当有事务操作时,数据库引擎会要求不同类型的锁定,如相关数 ...

  10. 4.前端笔记之jsdom基础

    一.简介 文件对象模型(Document Object Model,简称DOM),是W3C组织推荐的处理可扩展标志语言的标准编程接口.DOM编程: DOM 是关于如何获取.修改.添加或删除 HTML ...