【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1049
题意:给一个长度为n的整数序列。把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。1. 询问最少需要改变多少个数。 2. 在1的条件下每个数改变的绝对值之和的最小值。(n<=35000, 数据随机)
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const int N=50005, oo=~0u>>2;
int a[N], n, b[N], g[N], pos[N], nxt[N], inext[N], f[N]; void init() {
for1(i, 1, n) g[i]=oo;
for1(i, 1, n) {
int k=upper_bound(g+1, g+1+i, b[i])-g;
f[i]=k;
g[k]=b[i];
nxt[i]=pos[k];
inext[i]=pos[k-1];
pos[k]=i;
}
}
ll ans[N], c[N];
void work() {
for1(i, 2, n) {
int p=inext[i], pos=1;
ans[i]=oo;
while(p) { if(b[i]>=b[p]) pos=p; p=nxt[p]; }
p=pos;
ll sum=0, mx=-oo; c[p]=0;
for1(j, p+1, i-1) c[j]=c[j-1]+(b[j]<b[i]?1:-1);
for3(j, i-1, p) {
if(b[j]<=b[i] && f[j]+1==f[i]) {
ans[i]=min(ans[i], ans[j]+sum);
ans[i]=min(ans[i], ans[j]+sum-(ll)(b[i]-b[j])*(mx-c[j]));
}
if(mx<c[j]) mx=c[j];
sum+=abs(b[i]-b[j]);
}
}
} int main() {
read(n); b[1]=-oo; ++n;
for1(i, 2, n) read(a[i]), b[i]=a[i]-i;
++n; b[n]=oo-n;
init();
work();
printf("%d\n%lld\n", n-f[n], ans[n]);
return 0;
}
又是一题神题啊。orz
首先第一个问很容易看出
f[i]=min{f[j]+1, a[i]-a[j]>=i-j}
设b[i]=a[i]-i
得
f[i]=min{f[j]+1, b[i]>=b[j]}
然后就是lis的log算法。。。。
第二个问,好神!!!
首先发现,如果有b[i]>=b[j]且f[i]==f[j]+1时,区间[j, i]中的点一定都是大于b[i]或者小于b[j],很显然吧。。
而我们要将[j, i]的点变成合法序列一定是存在一个点t,使得[j, t]变成b[j],[t+1, i]变成b[i]。(在原序列中就变成了a[j], a[j+1]=a[j]+1, a[j+2]=a[j]+2...这样)
如何证明?不会QAQ
试着证明一下:考虑最优点t,假设b[t]不变成b[j],而是变成b'[t]>b[j],且b'[t]<b[i]。那么因为原b[t]<b[j]或者b[t]>b[i],显然费用为b'[t]-b[t]>b[j]-b[t](当b[t]<b[j]时)b[t]-b'[t]>b[t]-b[i](当b[t]>b[i]时),得出b[j]<b'[t]<b[i]没有b'[t]=b[j]或=b[i]优,即证。
那么这样搞是n^3的,,,,,,,,,,,,,,
先试着搞成n^2。考虑当前转移点为i
我们首先找出离i最远的j,b[i]>=b[j]且f[i]==f[j]+1,那么所有的转移点都包含在区间[j, i]中。
考虑从i向左枚举至j,当前在k,此时假设现在将所有[k+1, i-1]的点全部变为b[i],那么当k是转移点时,我们需要得到最小值。
因为现在[k+1, i-1]全都是变成了b[i],那么假设要将其中的点变成b[j],显然:如果原b[x]>b[i],那么费用还需要+(b[i]-b[j]),如果原b[x]<b[i],那么费用就需要-(b[i]-b[j])。假设[k, i]中最优点t,[k+1, t]有y个比b[i]大的点,z个比b[i]小的点,那么需要变化的费用为:
sum-(b[i]-b[k])*z+(b[i]-b[k])*y=sum-(b[i]-b[k])*(z-y),而区间[j, i]中所有转移点k显然是b[k]单调不降的,所以b[i]-b[k]在单调不增的,所以目标变成最大化(z-y)。
所以考虑前缀和找出最大的差就行了。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
那么问题变成n^2...
然后题目说。。。随机数据。。。。。。。。。。。。水过。
(还有注意一点是,如何快速找到j点,那么我们在lis时向所有转移点连边,然后快速找到即可,否则复杂度会更大)
【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)的更多相关文章
- bzoj 1049 [HAOI2006]数字序列
[bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...
- bzoj 1049: [HAOI2006]数字序列【dp+二分+瞎搞】
第一问明显就是用b[i]=a[i]-i来做最长不下降子序列 然后第二问,对于一对f[i]=f[j]+1的(i,j),中间的数一定要改的,并且是等于b[i]或者b[j],我不会证,然后因为是随机数据,所 ...
- 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)
1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...
- 1049: [HAOI2006]数字序列 - BZOJ
Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大.Input 第一行包含一个数n ...
- 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...
- 洛谷 P2501 [HAOI2006]数字序列 解题报告
P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...
- 【BZOJ1049】 [HAOI2006]数字序列
BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...
- [luogu2501 HAOI2006] 数字序列 (递推LIS)
题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. 输入输出格式 输入格式: 第一行包含一个数 ...
- 【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS
很有(\(bu\))质(\(hui\))量(\(xie\))的一个题目. 第一问:求最少改变几个数能把一个随机序列变成单调上升序列. \(Solution:\)似乎是一个结论?如果两个数\(A_i\) ...
随机推荐
- 2015安徽省赛 F.多重部分和问题
题目描述 有n种不同大小的数字,每种各个.判断是否可以从这些数字之中选出若干使它们的和恰好为K. 输入 首先是一个正整数T(1<=T<=100) 接下来是T组数据 每组数据第一行是一个正整 ...
- static总结
[本文链接] http://www.cnblogs.com/hellogiser/p/static.html [分析] [内存分配方式] 在C++中,内存分成5个区,他们分别是堆.栈.自由存储区.全局 ...
- HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- UVA 10325 The Lottery( 容斥原理)
The Sports Association of Bangladesh is in great problem with their latest lottery `Jodi laiga Jai'. ...
- dubbo.xsd
<xsd:import namespace="http://www.w3.org/XML/1998/namespace"/> <xsd:import namesp ...
- 网络流-最大流 模板(poj 1273)
#include<cstdio> #include<iostream> #include<cstring> #include<queue> #defin ...
- QML入门教程
QML是Qt推出的Qt Quick技术的一部分,是一种新增的简便易学的语言.QML是一种陈述性语言,用来描述一个程序的用户界面:无论是什么样子,以及它如何表现.在QML,一个用户界面被指定为具有属性的 ...
- HTTP协议中状态码的应用
HTTP状态码(HTTP Status Code)是用以表示网页服务器HTTP响应状态的3位数字代码. 所有状态码的第一个数字代表了响应的五种状态之一. Mark from 维基百科 消息 ...
- ORACLE用SYS登录报ORA-28009:connection as SYS should be as SYSDBA OR SYSOPER解决方法
情况一:使用sqlplus登录 正常输入用户名的口令,就会报错,因为SYS是在数据库之外的超级管理员,所以我们在登录的时候 要在输入口令:口令+as sysdba(比如:123456 as sysdb ...
- WPF中的常用类汇总:
1.FrameworkElement: WPF中大部分的控件都可以转化成FrameworkElement,利用FrameworkElement属性获取相应的值: 2.WPF获取当前工作区域的宽度和高度 ...