Matrix Chain Multiplication

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 834    Accepted Submission(s): 570

Problem Description
Matrix multiplication problem is a typical example of dynamical programming.

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.
There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125

Source
University of Ulm Local Contest 1996

A cost of one multiplication is r1*c1*c2.The qualification of two matrices which can multiply is c1==r2.
In this exercise,the main bother is how to deal with parentheses.I think this is tedious,so I use Depth_Priority_Search.

#include<stdio.h>
#include<string.h>
char str[1500],ch;
int row[256],col[256];
class node
{
public:
int ro,co,ans;
};
int match(int x)
{
int lnum=1,rnum=0,i;
for (i=x+1;i<strlen(str);i++)
{
if (str[i]=='(') lnum++;
if (str[i]==')') rnum++;
if (lnum==rnum) return i;
}
}
int find(int l,int r)
{
int i;
for (i=l;i<=r;i++)
if (str[i]=='(') return i;
return -1;
}
node dfs(int l,int r)
{
node ret;
if (l+1==r && str[l]=='(' && str[r]==')')
{
ret.ans=0;
return ret;
}
if (str[l]=='(')
{
int m=match(l);
if (m==r) return dfs(l+1,r-1);
node lans=dfs(l+1,m-1),rans=dfs(m+1,r);
if (lans.ans==-1 || rans.ans==-1 || lans.co!=rans.ro)
{
ret.ans=-1;
return ret;
}
ret.ans=lans.ans+rans.ans+lans.ro*lans.co*rans.co;
ret.ro=lans.ro;ret.co=rans.co;
return ret;
}
int p=find(l,r);
if (p>=0)
{
node lans=dfs(l,p-1),rans=dfs(p,r);
if (lans.ans==-1 || rans.ans==-1 || lans.co!=rans.ro)
{
ret.ans=-1;
return ret;
}
ret.ans=lans.ans+rans.ans+lans.ro*lans.co*rans.co;
ret.ro=lans.ro;ret.co=rans.co;
return ret;
}
int i,ro=row[str[l]],co=col[str[l]];
ret.ans=0;
ret.ro=row[str[l]];
ret.co=col[str[r]];
for (i=l+1;i<=r;i++)
{
if (co!=row[str[i]])
{
ret.ans=-1;
return ret;
}
ret.ans+=ro*co*col[str[i]];
}
return ret;
}
int main()
{
int i,N;
scanf("%d",&N);
ch=getchar();
for (i=1;i<=N;i++)
{
scanf("%c",&ch);
scanf("%d%d",&row[ch],&col[ch]);
ch=getchar();
}
while (scanf("%s",str)!=EOF)
{
int l=0,r=strlen(str)-1;
node ret=dfs(l,r);
if (ret.ans==-1) printf("error\n");
else printf("%d\n",ret.ans);
}
return 0;
}

Matrix Chain Multiplication[HDU1082]的更多相关文章

  1. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  2. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  3. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  4. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  5. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

  6. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  7. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  8. uva-442 Matrix Chain Multiplication

    Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since ma ...

  9. Matrix Chain Multiplication UVA - 442

    Suppose you have to evaluate an expression like ABCDE where A,B,C,D and E are matrices. Since matrix ...

随机推荐

  1. java笔试二

    16.同步和异步有何异同,在什么情况下分别使用他们?举例说明.如果数据将在线程间共享.例如正在写的数据以后可能被另一个线程读到,或者正在读的数据可能已经被另一个线程写过了,那么这些数据就是共享数据,必 ...

  2. BZOJ 1600

    开始刷一些USACO月赛题了.. 这题简单递推就不说了. 然后我们发现暴力递推是$O(n^2)$的.看起来非常慢. 这道题拥有浓厚的数学色彩,因此我们可以从数学它的规律上找突破口. (于是暴力大法好, ...

  3. SpringMVC配置easyui-datagrid

    SprimgMVC的UserController.java @RequestMapping(value = "listUserForJson") @ResponseBody pub ...

  4. Plus One Linked List

    Given a non-negative number represented as a singly linked list of digits, plus one to the number. T ...

  5. PHP+七牛云存储上传图片代码片段

    2014年11月14日 16:37:51 第一段代码是上传单个图片的,第二个是上传多个图片的 //上传到七牛 //单个文件 //formname: 表单名字; pre: 图片Url中显示的图片名字(也 ...

  6. Linux下配置JDK

    下面以CentOS为例,详细说一下Linux下配置JDK的过程 首先按照约定俗成的习惯,将jdk放在/usr/local/java下,首先进入/usr/local然后新建一个目录java 然后我们需要 ...

  7. 【JAVA、C++】 LeetCode 008 String to Integer (atoi)

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

  8. [Android Pro] proguard.cfg 配置文件

    转载自:http://my.oschina.net/zhangzhihao/blog/72393 # ------------------------------------- # android 原 ...

  9. 一、HTML和CSS基础--网页布局--实践--导航条菜单的制作

    案例一:导航菜单的制作 垂直菜单

  10. .net学习笔记----HttpRequest类

    一.HttpRequest的作用 HttpRequest的作用是令到Asp.net能够读取客户端发送HTTP值.比如表单.URL.Cookie传递过来的参数. 返回字符串的那些值就不说了,那些基本上都 ...