我们知道下式成立:

\begin{equation}\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots\label{eq1}\end{equation}

所以有:

\begin{equation}\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\label{eq2}\end{equation}

现在我们来证明 \(\ln2=0\)。

\begin{equation*}\begin{split}\ln 2 =& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots \\\\=&\left (1+\frac{1}{3}+\frac{1}{5}+\ldots\right )-\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right ) \\\\=&\left (1+\frac{1}{3}+\frac{1}{5}+\ldots\right )+\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right )- \\\\&2\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right ) \\\\=&\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right )-\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right ) \\\\=&0\end{split}\end{equation*}

得证。

现在我们来证明 \(2=1\)。

已知:

\begin{equation*}\ln 2 = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\ldots\end{equation*}

两边乘以 \(2\),有:

\begin{equation*}\begin{split}2 \ln 2 =& 2-1+\frac{2}{3}-\frac{1}{2}+\frac{2}{5}-\frac{1}{3}+\frac{2}{7}-\frac{1}{4}+\frac{2}{9}-\frac{1}{5}+\ldots \\\\=&1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\ldots \\\\=&\ln 2 \end{split}\end{equation*}

所以有:

\begin{equation*} 2 = 1\end{equation*}

以上这两个荒谬的结论的证明,哪里出了问题?

问题在于 \(\ln(1+x)\) 展开成的级数方程\eqref{eq1}不是绝对收敛的,而是条件收敛的,条件收敛的级数是不可以任意调整级数各项的位置的。

证明ln2=0 和 2=1的更多相关文章

  1. 证明 logX < X 对所有 X > 0 成立

    题目取自:<数据结构与算法分析:C语言描述_原书第二版>——Mark Allen Weiss       练习1.5(a)  证明下列公式: logX < X 对所有 X > ...

  2. MT【16】证明无理数(2)

    证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...

  3. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

  4. xor定理证明

    xor 证明: 0 xor 0=0 0 xor 1=1 1 xor 0=1 1 xor 1=0 0 xor 其它数,数值不会改变1 xor 其它数,数值会反转 所以x个数0和y个数1进行xor运算(0 ...

  5. Webx.0-Web3.0:Web3.0

    ylbtech-Webx.0-Web3.0:Web3.0 Web3.0只是由业内人员制造出来的概念词语,最常见的解释是,网站内的信息可以直接和其他网站相关信息进行交互,能通过第三方信息平台同时对多家网 ...

  6. [笔记] $f(i)$ 为 $k$ 次多项式,$\sum_{i=0}^nf(i)\cdot q^i$ 的 $O(k\log k)$ 求法

    \(f(i)\) 为 \(k\) 次多项式,\(\sum_{i=0}^nf(i)\cdot q^i\) 的 \(O(k\log k)\) 求法 令 \(S(n)=\sum_{i=0}^{n-1}f(i ...

  7. OpenCASCADE Rational Bezier Curves

    OpenCASCADE Rational Bezier Curves eryar@163.com Abstract. Although polynomials offer many advantage ...

  8. 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...

  9. (原)解决.NET 32位程序运行在64位操作系统下的兼容性问题

    背景:一个第三方组件是C++.NET  32位开发的,后被C#(基于FrameWork4.0)调用并封装成组件,此二次封装的组件无法运行于64位操作系统上.        开发环境:VS2012:解决 ...

随机推荐

  1. 20145215《Java程序设计》第10周学习总结

    20145215<Java程序设计>第十周学习总结 教材学习内容总结 网络编程 网络概述 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定 ...

  2. UICollectionView 简单使用

    显示数据列表 大家通常使用的是UITableView 不用说TableView 是大家的首选.在iOS6之前这也是必选.但是伴随着APP的成长一起都在变化目前更多的呈现一种块状的显示效果.之前的行式显 ...

  3. 在.net中为什么第一次执行会慢?

    众所周知.NET在第一次执行的时比第二第三次的效率要低很多,最常见的就是ASP.NET中请求第一个页面的时候要等上一段时间,而后面任意刷新响应都非常迅速,那么是什么原因导致的呢?为什么微软不解决这个问 ...

  4. offsetWidth与scrollLeft

    有两个值一个是:scrollTop一个是scrollLeft第一个代表页面利用滚动条滚动到下方时,隐藏在滚动条上方的页面的高度:第二个代表页面利用滚动条滚动到右侧时,隐藏在滚动条左侧的页面的宽度 do ...

  5. 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2605  Solved: 914[Submit][Stat ...

  6. EF—主键冲突解决办法

    报错信息: 编辑代码: 解决办法: 在Controller中不要把实体直接传过去,而要根据id先查出来,然后把查出来的实体传递过去就OK了

  7. 转:java多线程--同步容器

    java同步容器 在Java的集合容器框架中,主要有四大类别:List.Set.Queue.Map.List.Set.Queue接口分别继承了Collection接口,Map本身是一个接口.注意Col ...

  8. 传智168期JavaEE就业班 day02-css

    * 课程回顾: * HTML语言 * HTML的简介 超文本标记语言. * 是网页最基础的语言. * 都是由标签所组成的. * HTML的基本格式 <html> <head> ...

  9. zabbix_agent安装(Centos+Ubuntu)

      Centos安装 安装依赖包    yum -y install mysql-devel libcurl-devel net-snmp-devel 添加用户 groupadd zabbix use ...

  10. 可视化HTML编辑器

    [荐] 可视化HTML编辑器 CKEditor CKEditor是新一代的FCKeditor,是一个重新开发的版本.CKEditor是全球最优秀的网页在线文字编辑器之一,因其惊人的性能与可扩展性而广泛 ...