[ACM_几何] UVA 11300 Spreading the Wealth [分金币 左右给 最终相等 方程组 中位数]
Problem
A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that the total number of coins is divisible by the number of people in the village. Finally, each person gives a number of coins to the person on his right and a number coins to the person on his left, such that in the end, everyone has the same number of coins. Given the number of coins of each person, compute the minimum number of coins that must be transferred using this method so that everyone has the same number of coins.
The Input
There is a number of inputs. Each input begins with n(n<1000001), the number of people in the village. n lines follow, giving the number of coins of each person in the village, in counterclockwise order around the table. The total number of coins will fit inside an unsigned 64 bit integer.
The Output
For each input, output the minimum number of coins that must be transferred on a single line.
Sample Input
3
100
100
100
4
1
2
5
4
Sample Output
0
4
Problem setter: Josh Bao
题目大意:n人围绕圆桌,每个人有一定数量金币,金币总数能被n整除。每个人可以给他左右的人一些金币,最终使每个人金币数相等。求被转手金币最小值。
解题思路:
1、列出方程组:
设Ai为初始金币数,xi表示i号给i-1号金币数[可正可负],M为最终每个人的金币数,则:
for the first person: A1-x1+x2=M-->x2=M-A1+x1=x1-C1[规定C1=A1-M]
for the second person: A2-x2+x3=M-->x3=M-A2+x2=2M-A1-A2+x1=x1-C2
for the third person: A3-x3+x4=M-->x4=M-A3+x3=3M-A1-A2-A3+x1=x1-C3
......
for the nth person: An-xn+x1=M[这是一个多余的式子,并不能给我们更多的信息]
2、转换为单变量问题:
我们希望所有xi的绝对值之和最小,即:|x1|+|x1-C1|+|x1-C2|+...+|x1-Cn|最小。
3、转换为几何问题:
注意上式的几何意义就是数轴上给定n个点找出一个到他们之和尽量小的点。
4、递归求最优解:
这个最优的x1就是他们的中位数。
#include<iostream>
#include<algorithm>
#include<cstdio>
typedef long long LL;
using namespace std;
LL A[],C[];//A[i]表示第i人初始金币数
int main(){
int n;
while(cin>>n){
LL tot=;//总数
for(int i=;i<n;i++){
cin>>A[i];
tot+=A[i];
}
LL M=tot/n;//平均数
C[]=;
for(int i=;i<n;i++){
C[i]=C[i-]+A[i]-M;//递推数组C
}
sort(C,C+n);
LL x1=C[n/],ans=;//计算x1
for(int i=;i<n;i++){
ans+=abs(x1-C[i]);
}
cout<<ans<<'\n';
}return ;
}
[ACM_几何] UVA 11300 Spreading the Wealth [分金币 左右给 最终相等 方程组 中位数]的更多相关文章
- UVa 11300 Spreading the Wealth 分金币
圆桌旁坐着 n 个人,每个人都有一定数量的金币,金币总数能够被 n 整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值,比如 n = 4, ...
- UVA - 11300 Spreading the Wealth(数学题)
UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金 ...
- UVa 11300 Spreading the Wealth(有钱同使)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...
- uva 11300 - Spreading the Wealth(数论)
题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...
- UVA.11300 Spreading the Wealth (思维题 中位数模型)
UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人 ...
- 数学/思维 UVA 11300 Spreading the Wealth
题目传送门 /* 假设x1为1号给n号的金币数(逆时针),下面类似 a[1] - x1 + x2 = m(平均数) 得x2 = x1 + m - a[1] = x1 - c1; //规定c1 = a[ ...
- Uva 11300 Spreading the Wealth(递推,中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
- Math - Uva 11300 Spreading the Wealth
Spreading the Wealth Problem's Link ---------------------------------------------------------------- ...
- UVA 11300 Spreading the Wealth (数学推导 中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
随机推荐
- 内置对象(Session、Application、ViewState)
内置对象:为了跨页面传值和状态保持.→HTTP的无状态性 [4.]Session:每一台电脑访问服务器,都会是独立的一套session,key值都一样,但是内容都是不一样的 以上所有内容,都跟cook ...
- 设置input 内容居中显示 .
text-align:center 水平居中显示 <style type="text/css"> input.text{text-align:center;paddi ...
- UI组件之Group
当Group旋转或缩放时,它的孩子们正常绘制,并且Batch变换后正确的旋转或缩放. 绘制Group前,Batch flush使得变换可以设置.有很多Group时这将可能成为性能瓶颈.如果在一组演员不 ...
- HTML小知识---Label
今天知道了一个html小知识: <input type="checkbox" id="chkVersion" /> ...
- iOS真机调试问题-App installation failed,The maximum number of apps for free development profiles has been reached.
The maximum number of apps for free development profiles has been reached. 源引:http://www.jianshu.com ...
- C# 生成条形码
原文地址:http://www.cnblogs.com/xcsn/p/4514759.html 引用BarcodeLib.dll(百度云中有)生成条形 protected void Button2_C ...
- eclipse 配置黑色主题
虽然以前也使用eclipse的黑色主题,但是配置起来稍微麻烦一点. 这里先声明,下面的方式适合最新版本的Eclipse Luna,旧的版本可以下载我提供的这个插件,并将其放在eclipse目录下的pl ...
- coursera 机器学习课程 GraphLab环境准备
在网上看到coursera有机器学习的课程,正好再学习学习,温固一下,还有很多其他的课程也很好.收费的哟! 手机APP和网站收取的费用有差异,网站上要便宜一下,费用差的挺多的,果断在网站上支付了. 有 ...
- mesos框架编译部署
mesos是什么呢? 一个分布式调度框架,让你编写代码时面对整个集群像面对一台机器那么简单.所有的运行,资源调度都可以由它来帮你搞掂. 1.mesos安装有两种方式: 1)参考官网的getstart, ...
- andorid 远程存储中JDK和Volley的GET和POST方法
在操作Volley的时候先添加volley.jar(包) <uses-permission android:name="android.permission.INTERNET" ...