题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个,然后要你给出第n+1项,如果符合多个方程,项数小的优先(第一个方程优先)。

解法:这题我先处理看是否满足f[n] = a*f[n-1]的形式,如果不满足,则用高斯消元借出两项和三项的情况的a,b,c,比如第二个方程,f[3] = a*f[2]+b*f[1],f[4] = a*f[3]+b*f[2],两个方程两个未知量,用高斯消元解出a,b,这里可能不是整数,我将他们加了个0.5取下整,居然对了。后来看那场比赛没一个人是用的高斯消元,所以不知道这样是否正确,有看出来端倪的欢迎评论告诉我。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 4 int f[];
typedef double Matrix[N][N];
int x,y,z; void gauss_elimination(Matrix A,int n)
{
int i,j,k,r;
for(i=;i<n;i++)
{
//选一行r并与i行交换
r = i;
for(j=i+;j<n;j++)
if(fabs(A[j][i]) > fabs(A[r][i]))
r = j;
if(r != i)
{
for(j=;j<=n;j++)
swap(A[r][j],A[i][j]);
}
//与第i+1~n行进行消元
for(k=i+;k<n;k++)
{
double f = A[k][i]/A[i][i]; //为了让A[k][i] = 0,第i行乘以的倍数
for(j=i;j<=n;j++)
A[k][j] -= f*A[i][j];
}
}
//回代
for(i=n-;i>=;i--)
{
for(j=i+;j<n;j++)
A[i][n] -= A[j][n]*A[i][j];
A[i][n] /= A[i][i];
}
x = (int)floor(A[][n]+0.5);
y = (int)floor(A[][n]+0.5);
if(n == )
z = (int)floor(A[][n]+0.5);
} int main()
{
int t,n,i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(f,,sizeof(f));
for(i=;i<=n;i++)
scanf("%d",&f[i]);
int ans = Mod;
int a1,a2,a3;
int flag;
if((f[] == && f[] == ) || f[]%f[] == )
{
if(f[] == && f[] == )
a1 = ;
else
a1 = f[]/f[];
flag = ;
for(i=;i<=n;i++)
{
if(f[i] != a1*f[i-])
flag = ;
}
if(flag)
ans = a1*f[n];
}
if(ans != Mod)
{
printf("%d\n",ans);
continue;
}
Matrix A;
A[][] = A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
gauss_elimination(A,);
flag = ;
for(i=;i<=n;i++)
{
if(f[i] != x*f[i-]+y*f[i-])
flag = ;
}
if(flag)
ans = x*f[n]+y*f[n-];
if(ans != Mod)
{
printf("%d\n",ans);
continue;
}
A[][] = A[][] = A[][] = f[];
A[][] = A[][] = f[];
A[][] = f[];
A[][] = A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
gauss_elimination(A,);
//printf("%d %d %d\n",x,y,z);
ans = x*f[n]+y*f[n-]+z*f[n-];
if(ans != Mod)
printf("%d\n",ans);
}
return ;
}

UVALive 6449 IQ Test --高斯消元?的更多相关文章

  1. First Knight UVALive - 4297(优化高斯消元解概率dp)

    题意: 一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n).给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ...

  2. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  3. UVALive 7455 Linear Ecosystem (高斯消元)

    Linear Ecosystem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/B Description http://7xj ...

  4. UVALive - 6185 Find the Outlier暴力填表+高斯消元+卡eps

    https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f ...

  5. UVALive - 3490 Generator (AC自动机+高斯消元dp)

    初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...

  6. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  7. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  8. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  9. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

随机推荐

  1. MAC OS设置JDK小结

    开始折腾mac pro,在网上找了些资料,自己也尝试了一下,特在这里做个小结. mac中JDK的位置 OSX默认的JDK /System/Library/Frameworks/JavaVM.frame ...

  2. linux 下 整合 nginx 和 php

    一.整合nginx 和 PHP: # vi /usr/local/php/etc/php-fpm.conf 如果该文件不存在,有可能是默认的php-fpm.conf.default 可以使用命令拷贝一 ...

  3. C++ 面向对象的三个特点--多态性(一)

    C++的多态性定义 所谓多态性就是不同对象收到相同的消息产生不同的动作.通俗的说,多态性是指一个名字定义不同的函数,这些函数执行不同但又类似的操作,即用同样的接口访问功能不同的函数,从而实现“一个接口 ...

  4. js实现轮播

    在我们准备动手之前先了解下几个属性  dom元素的位置的几个相关属性 dom元素宽度/高度 clientWidth/clientHeight   元素的内尺寸   content + padding ...

  5. 向java的main()传入大量参数

    项目中有一些用java写成的可执行的工具,需要调用者传入大量的参数.最开始,我使用的是最传统的方式,直接一个传入参数数组,于是有如下这么壮观的代码: public static void main(S ...

  6. C#将DataTable转化为List<T>

    C#将DataTable转化为List<T> 在使用三层架构开发一个网站时,希望把DataTable对象转换为List<T>对象,于是在网上找资料,总结一个比较方便的方法来实现 ...

  7. C++指针笔记

    什么是指针: 指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址.通过指针我们可以直接对内存进行操作. 什么是地址: 比如你要给你朋友寄快递,在寄东西的时候是不是要填写地址,通过地址你的 ...

  8. Oracle_spatial的函数介绍[转]

    Oracle_spatial的函数 一sdo_Geom包的函数: 用于表示两个几何对象的关系(结果为True/False)的函数:RELATE,WITHIN_DISTANCE 验证的函数:VALIDA ...

  9. IO流-输入输出

    java的I/O技术可以将数据保存到文本.二进制.ZIP压缩文件中,下面来说说一些基本的常识(今天只讲理论).先来说说流,何为流?“流就是一组有序的数据序列,根据操作的类型,可以分为输入(Input) ...

  10. 【原】iOSCoreAnimation动画系列教程(二):CAKeyFrameAnimation【包会】

    在上一篇专题文章[原]iOSCoreAnimation动画系列教程(一):CABasicAnimation[包会]中我们学习了iOS核心动画CoreAnimation中CABasicAnimation ...